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1 Real Analysis

Definition 1 The extended real line is the set

{−∞} ∪ R ∪ {∞}.

Definition 2 The supremum of a set S ⊂ R is a value a ∈ Re such that ∀s ∈ S, s ≤ a
and if b ∈ Re such that ∀s ∈ S, s ≤ b, then a ≤ b.

Supremum is essentially the “least upper bound” in a set. It always exists, and is
called supS. The opposite of supremum is the infinimum.

Definition 3 The infinimum of a set S ⊂ R is a value a ∈ Re such that ∀s ∈ S, s ≥ a
and if b ∈ Re such that ∀s ∈ S, s ≥ b, then a ≥ b.

The infinimum is the “greatest upper bound”. Like the supremum, it always exists,
and it is denoted inf S. Supremum and Infinimum can be applied to scalar function
f : S → R by letting

sup
x∈S

f(x) = sup{f(x)|x ∈ S}.

1.1 Norms

Definition 4 Let V be a vector space of R, then ‖ · ‖ : V → R is a norm if ∀x,y ∈ V, α ∈
R,

‖x‖ ≥ 0, x = 0⇔ ‖x‖ = 0, ‖αx‖ = |α|‖x‖, ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Definition 5 A normed space (V, ‖ · ‖) is a vector space which is equipped with a norm
‖ · ‖ : V → R.

If we have an operator A which takes vectors from normed space (X, ‖ · ‖X) and
outputs vectors in normed space (Y, ‖ · ‖Y ), then we can define another norm on
the vector space of operators from X → Y .

Definition 6 Let A : X → Y be an operator between normed spaces (X, ‖ · ‖X) and
(Y, ‖ · ‖Y ), then the induced norm of A is

‖A‖i = sup
‖x‖X 6=0

‖Ax‖Y
‖x‖X
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The induced norm can be thought of as the maximum gain of the operator.

Definition 7 Two norms ‖ · ‖ and ||| · ||| on a vector space V are said to be equivalent if
∃k1, k2 > 0 such that

∀x ∈ V, k1‖x‖ ≤ |||x||| ≤ k2‖x‖

If V is a finite dimensional vector space if and only if all norms of V are equivalent.

1.2 Sets

Definition 8 Let (V, ‖ · ‖) be a normed space, a ∈ R, a > 0, x0 ∈ V , then the open ball
of radius a centered around x0 is given by

Ba(x0) = {x ∈ V | ‖x− x0‖ < a}

Definition 9 A set S ⊂ V is open if ∀s0 ∈ S, ∃ε > 0 such that Bε(s0) ⊂ S.

Open sets have a boundary which is not included in the set. By convention, we
say that the empty set is open.

The opposite of an open set is a closed set.

Definition 10 A set S is closed if ∼ S is open.

Closed sets have a boundary which is included in the set.

1.3 Convergence

Definition 11 A sequence of points xk in normed space (V, ‖ · ‖) converges to a point x̄ if

∀ε > 0, ∃N <∞, such that ∀k ≥ N, ‖xk − x̄‖ < ε

Convergence means that we can always find a finite time such that after that time,
all points in the sequence stay within a specified norm ball.

Definition 12 A sequence xk is cauchy if

∀ε > 0, ∃N <∞ such that ∀n,m ≥ N, ‖xm − xn‖ < ε
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A Cauchy sequence has a looser type of convergence than a convergent sequence
since it only requires all elements to in the sequence to be part of the same norm
ball after some time instead of requiring the sequence to get closer and closer to a
single point.

Theorem 1 If xn is a convergent sequence, then xn is a also a Cauchy sequence.

Definition 13 A normed space (V, ‖ · ‖) is complete if every Cauchy sequence converges
to a point in V .

Because a complete space requires that Cauchy sequences converge, all cauchy
sequences are convergent in a complete space. Two important complete spaces are

1. Every finite dimensional vector space

2. (C[a, b], ‖ · ‖∞), the set of continuously differentiable functions on the closed
interval [a, b] equipped with the infinity norm.

A complete normed space is also called a Banach Space.

1.4 Contractions

Definition 14 A point x∗ is a fixed point of a function P : X → X if P (x∗) = x∗.

Definition 15 A function P : X → X is a contraction if ∃c ∈ R, 0 ≤ c < 1 such that

∀x,y ∈ X, ‖P (x)− P (y)‖ ≤ c‖x− y‖

Informally, a contraction is a function which makes distances smaller. Suppose we
look at a sequence defined by iterates of a function

xk+1 = P (xk)

where P is a function P : X → X . When does this sequence converge, and to what
point will it converge?

Theorem 2 (Contraction Mapping Theorem) If P : X → X is a contraction on the
Banach space (X, ‖·‖), then there is a unique x∗ ∈ X such that P (x∗) = x∗ and ∀x0 ∈ X ,
the sequence xn+1 = P (xn) converges to x∗.

The contraction mapping theorem proves that contractions have a unique fixed
points, and that repeatedly applying the contraction will converge to the fixed
point.
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1.5 Continuity

Definition 16 A function h : V → W on normed spaces (V, ‖ · ‖V ) and (W, ‖ · ‖W ) is
continuous at a point x0 if ∀ε > 0,∃δ > 0 such that

‖x− x0‖V < δ =⇒ ‖h(x)− h(x0)‖W < ε

Continuity essentially means that given an ε−ball in W , we can find a δ−ball in V
which is mapped to the ball in W . If a function is continuous at all points x0, then
we say the function is continuous.

We can make the definition of continuity more restrictive by restraining the rate of
growth of the function.

Definition 17 A function h : V → W on normed spaces (V, ‖ · ‖V ) and (W, ‖ · ‖W ) is
Lipschitz continuous at x0 ∈ V if ∃r > 0 and L <∞ such that

∀x,y ∈ Br(x0), ‖h(x)− h(y)‖W ≤ L‖x− y‖V

A good interpretation of Lipschitz Continuity is that given two points in a ball
around x0, the slope of the line connecting those two points is less than L. It
means that the function is growing slower than linear for some region around x0.
Lipschitz continuity implies continuity. If a function is lipschitz continuous with
respect to one norm, it is also lipschitz continuous with respect to all equivalent
norms.

When the function h is a function on Rn and is also differentiable, then Lipschitz
continuity is easy to determine.

Theorem 3 For a differentiable function h : Rn → Rn,

∃r > 0, L <∞,x0 ∈ Rn, ∀x ∈ Br(x0),

∣∣∣∣∣∣∣∣∂h∂x
∣∣∣∣∣∣∣∣

2

≤ L

implies Lipschitz Continuity at x0.

This captures the idea of growing slower than linear in high dimensional space.

Definition 18 A function h : R→ V is piecewise continuous if ∀k ∈ Z, h : [−k, k]→ V
is continuous except at a possibly finite number of points, and at the points of discontinuity
ti, lims→0+ h(ti + s) and lims→0− h(ti + s) exist and are finite.
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2 Differential Geometry

Definition 19 M ⊂ Rn is a m-dimensional smooth sub-manifold of Rn if ∀p ∈M, ∃r >
0 and F : Br(p)→ Rn−m such that

M ∩Br(p) = {x ∈ Br(p)|F (x) = 0},
F is smooth,

∀x̄ ∈M ∩Br(p),Rank
(
∂F

∂x

∣∣∣∣
x̄

)
= n−m

By definition 19, a manifold is essentially defined as the 0-level set of some smooth
function F and can be thought of as a surface embedded in a higher dimension.

Definition 20 The tangent space of a manifold M at p ∈M is given by

TpM = Null

(
∂F

∂x

∣∣∣∣
p

)

The tangent space consists of all vectors tangent to the manifold at a particular
point p.

Definition 21 The Tangent Bundle of a manifold M is the collection of all tangent spaces

TM =
⋃
p∈M

TpM

Definition 22 A vector field f : M → TM on a manifold M is an assignment of each
point p ∈M to a vector in the tangent space in that point TpM .

Therefore, a vector field can be thought of as a curve through the tangent bundle
of a manifold.

Definition 23 The Lie Derivative of a function V with respect to a vector field f is given
by

LfV = (∇xV )>f(x).

A Lie Derivative is essentially a directional derivative, and it measures how a func-
tion changes along a vector field.
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Definition 24 Suppose that f(x) and g(x) are vector fields. The Lie Bracket of f and g is
given by

[f, g] = Lfg − Lgf

The Lie Bracket is another vector field, and it essentially measures the difference
between moving along vector field f and vector field g across some infinitesimal
distance. Another way to think about the Lie Bracket is as a measure of the extent
to which f and g commute with each other. The Lie Bracket is also sometimes
denoted using the adjoint map

ad
f
g = [f, g].

It is helpful when chaining Lie Brackets since we can denote

[f, [f, [f, · · · [f, g]]]] =
i

ad
f
g.

Since the Lie Bracket is a vector field, we can look at Lie Derivatives with respect
to the Lie Bracket of two vector fields.

Theorem 4 For a function h and vector fields f and g,

L[f,g]h = LfLgh− LgLfh

We can also use relate repeated Lie Derivatives to doing repeated Lie Brackets.

Theorem 5
LgL

i
fh(x) = 0⇔ Ladif g

h(x) = 0

Definition 25 Suppose f1, f2, · · · , fn are vector fields. A distribution ∆ is the span of the
vector fields at each point x:

∆(x) = span{f1(x), f2(x), · · · , fn(x)}.

At each point x, ∆(x) is a subspace of the tangent space at x.

Definition 26 The dimension of a distribution at a point x is given by

Dim ∆(x) = Rank
([
f1(x)

∣∣∣∣ f2(x)

∣∣∣∣ · · · ∣∣∣∣ fn(x)

])
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Distributions have different properties which are important to look at.

Definition 27 A distribution ∆ is nonsingular, also known as regular, if its dimension is
constant.

Definition 28 A distribution ∆ is involutive if

∀f, g ∈ ∆, [f, g] ∈ ∆

In involutive distributions, you can never leave the distribution by traveling along
vectors inside the distribution.

Definition 29 A nonsingularK-dimensional distribution ∆(x) = span{f1(x), · · · , fk(x)}
is completely integrable if ∃φ1, · · · , φn−k such that ∀i, k, Lfkφi = 0 and∇xφi are linearly
independent.

It turns out that integrability and involutivity are equivalent to each other.

Theorem 6 (Frobenius Theorem) A nonsingular ∆ is completely integrable if and only
if ∆ is involutive.

3 Nonlinear System Dynamics

Consider the nonlinear system

dx

dt
= f(x, t).

f is a vector field which potentially changes with time and governs how the system
evolves.

Definition 30 The system is autonomous if f(x, t) is not explicitly dependent on time t.

Definition 31 A point x0 is an equilibrium point at time t0 if

∀t ≥ t0, f(x0, t) = 0

Consider a single trajectory φ(t, t0,x0).
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Definition 32 A set S is said to be the ω−limit set of φ if

∀y ∈ S,∃tn →∞, lim
n→∞

φ(tn, t0,x0) = y

Whereas linear systems converge to a single point if they converge at all, nonlinear
systems can converge to a set of points. Thus the ω−limit set essentially generalizes
the idea of a limit.

Definition 33 A set M ⊂ Rn is said to be invariant if

∀t ≥ t0, y ∈M =⇒ φ(t, t0,y) ∈M

An invariant set is one which a trajectory of the system will never leave once it
enters the set. Just like linear systems, non-linear systems can also have periodic
solutions.

Definition 34 A closed orbit γ is a trajectory of the system such that γ(0) = γ(T ) for
finite T .

3.1 Solutions to Nonlinear Systems

Consider the nonlinear system

dx

dt
= f(x, t), x(t0) = x0 ∈ Rn.

Definition 35 A function Φ(t) is a solution to
dx

dt
= f(x, t), x(t0) = x0 on the closed

interval [t0, t] if Φ(t) is defined on the interval [t0, t],
dΦ

dt
= f(Φ(t), t) on the interval

[t0, t], and Φ(t0) = x0.

We say that Φ(t) is a solution in the sense of Caratheodory if

Φ(t) = x0 +

∫ t

t0

f(Φ(τ), τ)dτ.

Because the system is nonlinear, it could potentially have no solution, one solu-
tion, or many solutions. These solutions could exist locally, or they could exist for
all time. We might also want to know when there is a solution which depends
continuously on the initial conditions.
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Theorem 7 (Local Existence and Uniqueness) Given
dx

dt
= f(x, t), x(t0) = x0 ∈

Rn where f is piecewise continuous in t and ∃T > t0 such that ∀t ∈ [t0, T ], f is L-
Lipschitz Continuous, then ∃δ > 0 such that a solution exists and is unique ∀t ∈ [t0, t0 +
δ].

Theorem 7 can be proved using the Contraction Mapping Theorem (theorem 2) by
finding δ such that the function P : Cn[t0, t0 + δ]→ Cn[t0, t0 + δ] given by

P (Φ)(t) = x0 +

∫ t0+δ

t0

f(Φ(τ), τ)dτ

is a contraction under the norm ‖Φ‖∞ = supt0≤t≤t0+δ ‖Φ(t)‖.

Theorem 8 (Global Existence and Uniqueness) Suppose f(x, t) is piecewise contin-
uous in t and ∀T ∈ [t0,∞), ∃LT < ∞ such that f is LT Lipshitz continuous for all
x,y ∈ Rn, then the nonlinear system has exactly one solution on [t0, T ].

Once we know that solutions to a nonlinear system exist, we can sometimes bound
them.

Theorem 9 (Bellman-Gronwall Lemma) Suppose λ ∈ R is a constant and µ : [a, b]→
R is continuous and non-negative, then for a continuous function y : [a, b]→ R

y(t) ≤ λ+

∫ t

a

µ(τ)y(τ)dτ =⇒ y(t) ≤ λexp
(∫ t

a

µ(τ)dτ

)

Another thing we might want to do is understand how the nonlinear system reacts
to changes in the initial condition.

Theorem 10 Suppose the system
dx

dt
= f(x, t), x(t0) = x0 satisfies the conditions of

global uniqueness and existence. Fix T ∈ [t0,∞] and suppose x(·) and z(·) are two

solutions satisfying
dx

dt
= f(x, t),x(t0) = x0 and

dz

dt
= f(z(t), t), z(t0) = z0, then

∀ε > 0,∃δ > 0 such that

‖x0 − z0‖ < δ =⇒ ‖x− z‖∞ < ε.

Theorem 10 is best understood by defining a function Ψ : Rn → Cn[t0, t] where
Ψ(x0)(t) returns the solution to the system given the initial condition. If the condi-
tions of Theorem 10 are satisfied, then the function Ψ will be continuous.
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3.2 Planar Dynamical Systems

Planar dynamical systems are those with 2 state variables. Suppose we linearize

the autonomous system
dx

dt
= f(x) at an equilibrium point.

dx

dt
=
∂f

∂x

∣∣∣∣
x0

x

Depending on the eigenvalues of ∂f
∂x

, the Jacobian, we get several cases for how
this linear system behaves. We’ll let z1 and z2 be the eigenbasis of the phase space.

1. The eigenvalues are real, yielding solutions z1 = z1(0)eλ1t, z2 = z2(0)eλ2t. If
we eliminate the time variable, we can plot the trajectories of the system.

z1

z1(0)
=

(
z2

z2(0)

)λ1
λ2

(a) When λ1, λ2 < 0, all trajectories converge to the origin, so we call this a
stable node.

(b) When λ1, λ2 > 0, all trajectories blow up, so we call this an unstable
node.

(c) When λ1 < 0 < λ2, the trajectories will converge to the origin along the
axis corresponding to λ1 and diverge along the axis corresponding to λ2,
so we call this a saddle node.

2. There is a single repeated eigenvalue with one eigenvector. As before, we can
eliminate the time variable and plot the trajectories on the z1, z2 axes.

(a) When λ < 0, the trajetories will converge to the origin, so we call it an
improper stable node

(b) When λ > 0, the trajetories will diverge from the origin, so we call it an
improper unstable node

3. When there is a complex pair of eigenvalues, the linear system will have
oscillatory behavior. The Real Jordan form of ∂f

∂x
will look like

∂f

∂x
=

 α β

−β α

 .
The parameter β will determine the direction of the trajectories (clockwise if
positive).

(a) When α < 0, the trajectories will spiral towards the origin, so we call it
a stable focus.
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(b) When α = 0, the trajectories will remain at a constant radius from the
origin, so we call it a center.

(c) When α > 0, the trajectories will spiral away from the origin, so we call
it an unstable focus.

It turns out that understanding the linear dynamics at equilibrium points can be
helpful in understanding the nonlinear dynamics near equilibrium points.

Theorem 11 (Hartman-Grobman Theorem) If the linearization of a planar dynamical

system
dx

dt
= f(x) at an equilibrium point x0 has no zero or purely imaginary eigenval-

ues, then there exists a homeomorphism from a neighborhood U of x0 into R2 which takes
trajectories of the nonlinear system and maps them onto the linearization where h(x0) = 0,
and the homeomorphism can be chosen to preserve the parameterization by time.

Theorem 11 essentially says that the linear dynamics predict the nonlinear dynam-
ics around equilibria, but only for a neighborhood around the equilibrium point.
Outside of this neighborhood, the linearization may be very wrong.

Suppose that we have a simply connected region D (meaning D cannot be con-
tracted to a point) and we want to know if it contains a closed orbit.

Theorem 12 (Bendixon’s Theorem) If div(f) is not identically zero in a sub-region of
D and does not change sign in D, then D contains no closed orbits.

Theorem 12 lets us rule out closed orbits from regions of R2. If we have a positively
invariant region, then we can determine whether it contains closed orbits.

Theorem 13 (Poincare-Bendixson Theorem) If M is a compact, positively invariant
set for the flow φt(x), then if M contains no equilibrium points, then M has a limit cycle.

4 Stability of Nonlinear Systems

The equilibria of a system can tell us a great deal about the stability of the system.
For nonlinear systems, stability is a property of the equilibrium points, and to be
stable is to converge to or stay equilibrium.

Definition 36 An equilibrium point xe ∈ R is a stable equilibrium point in the sense of
Lyapunov if and only if ∀ε > 0, ∃δ(t0, ε) such that

∀t ≥ t0, ‖x0 − xe‖ < δ(t0, ε) =⇒ ‖x(t)− xe‖ < ε
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Lyapunov Stability essentially says that a finite deviation in the initial condition
from equilibrium means the resulting trajectory of the system stay close to equi-
librium. Notice that this definition is nearly identical to theorem 10. That means
stability of an equilibrium point is the same as saying the function which returns
the solution to a system given its initial condition is continuous at the equilibrium
point.

Definition 37 An equilibrium point xe ∈ R is an uniformly stable equilibrium point in
the sense of Lyapunov if and only if ∀ε > 0,∃δ(ε) such that

∀t ≥ t0, ‖x0 − xe‖ < δ(ε) =⇒ ‖x(t)− xe‖ < ε

Uniform stability means that the δ can be chosen independently of the time the
system starts at. Both stability and uniform stability do not imply convergence to
the equilibrium point. They only guarantee the solution stays within a particular
norm ball. Stricter notions of stabilty add this idea in.

Definition 38 An equilibrium point xe is attractive if ∀t0 > 0, ∃c(t0) such that

x(t0) ∈ Bc(xe) =⇒ lim
t→∞
‖x(t, t0,x0)− xe‖ = 0

Attractive equilibria guarantee that trajectories beginning from initial conditions
inside of a ball will converge to the equilibrium. However, attractivity does not
imply stability since the trajectory could go arbitarily far from the equilibrium so
long as it eventually returns.

Definition 39 An equilibrium point xe is asymptotically stable if xe is stable in the sense
of Lyapunov and attractive.

Asymptotic stability fixes the problem of attractivity where trajectories could go
far from the equilibrium, and it fixes the problem with stability where the trajec-
tory may not converge to equilibrium. It means that trajectories starting in a ball
around equilibrium will converge to equilibrium without leaving that ball. Be-
cause the constant for attractivity may depend on time, defining uniform asymp-
totic stability requires some modifications to the idea of attractivity.

Definition 40 An equilibrium point is uniformly asympototically stable ifxe is uniformly
stable in the sense of Lyapunov, and ∃c and γ : R+ × Rn → R+ such that

∀x0 ∈ Bc(xe), lim
τ→∞

γ(τ,x0) = 0, ∀t ≥ t0, ‖x(t, t0,x0)− xe‖ ≤ γ(t− t0,x0)
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The existence of the γ function helps guarantee that the rate of converges to equi-
librium does not depend on t0 since the function γ is independent of t0. Suppose
that the γ is an exponential function. Then solutions to the system will converge to
the equilibrium exponentially fast.

Definition 41 An equilibrium point xe is locally exponentially stable if ∃h,m, α such
that

∀x0 ∈ Bh(xe), ‖x(t, t0,x0)− xe‖ ≤ me−α(t−t0)‖x(t)− xe‖

Definitions 36, 37 and 39 to 41 are all local definitions because the only need to
hold for x0 inside a ball around the equilibrium. If they hold ∀x0 ∈ Rn, then they
become global properties.

Just as we can define stability, we can also define instability.

Definition 42 An equilibrium point xe is unstable in the sense of Lyapunov if ∃ε >
0,∀δ > 0 such that

∃x0 ∈ Bδ(xe) =⇒ ∃T ≥ t0, x(T, t0,x0) 6∈ Bε(xe)

Instability means that for any δ−ball, we can find an ε−ball for which there is at
least one initial condition whose corresponding trajectory leaves the ε−ball.

4.1 Lyapunov Functions

In order to prove different types of stability, we will construct functions which have
particular properties around equilibrium points of the system. The properties of
these functions will help determine what type of stable the equilibrium point is.

Definition 43 A class K function is a function α : R+ → R+ such that α(0) = 0 and
α(s) is strictly monotonically increasing in s.

A subset of the class K functions grow unbounded as the argument approaches
infinity.

Definition 44 A class KR function is a class K function α where lims→∞ α(s) = s.

ClassKR functions are “radially unbounded”. We can use classK and class KR to
bound “energy-like” functions called Lyapunov Functions.
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Definition 45 A function V (x, t) : Rn × R+ → R is locally positive definite (LPDF) on
a set G ⊂ Rn containing xe if ∃α ∈ K such that

V (x, t) ≥ α(‖x− xe‖)

LPDF functions are locally “energy-like” in the sense that the equilibrium point is
assigned the lowest “energy” value, and the larger the deviation from the equilib-
rium, the higher the value of the “energy”.

Definition 46 A function V (x, t) : Rn×R+ → R is positive definite (PDF) if ∃α ∈ KR
such that

∀x ∈ Rn, V (x, t) ≥ α(‖x− xe‖)

Positive definite functions act like “energy functions” everywhere in Rn.

Definition 47 A function V (x, t) : Rn × R+ → R is decrescent if ∃α ∈ K such that

∀x ∈ Bh(xe), V (x, t) ≤ β(‖x− xe‖)

Descresence means that for a ball around the equilibrium, we can upper bound the
the energy.

Note that we can assume xe = 0 without loss of generality for definitions 45 to 47
since for a given system, we can always define a linear change of variables that
shifts the equilibrium point to the origin.

4.1.1 Quadratic Lyapunov Functions

Definition 48 A Quadratic Lypunov function is of the form

V (x) = x>Px, P � 0

Quadratic Lyapunov Functions are one of the simplest types of Lyapunov Func-
tions. Their level sets are ellipses where the major axis is the eigenvector cor-
responding to λmin(P ), and the minor axis is the eigenvecctor corresponding to
λmax(P ).

Theorem 14 Consider the sublevel set Ωc = {x|V (x) ≤ c}. Then r∗ is the radius of the
largest circle contained inside Ωc, and r∗ is the radius of the largest circle containing Ωc.

r∗ =

√
c

λmax(P )
r∗ =

√
c

λmin(P )
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4.1.2 Sum-of-Squares Lyapunov Functions

Definition 49 A polynomial p(x) is sum-of-squares (SOS) if ∃g1, · · · , gr such that

p(x) =
r∑
i=1

g2
i (x)

SOS polynomials have the nice property that they are always non-negative due
to being a sum of squared numbers. Since any polynomial can be written in a
quadratic form P (x) = z>(x)Qz(x) where z is a vector of monomials, the proper-
ties of Q can tell us if P is SOS or not.

Theorem 15 A polynomial is SOS if and only if it can be written as

p(x) = z>(x)Qz(x), Q � 0

Note that Q is not necessarily unique, and if we construct a linear operator which
maps Q to P , then this linear operator will have a Null Space. Mathematically,
consider

L(Q)(x) = z>(x)Qz(x).

This linear operator has a null space spanned by the polynomials Nj . Given a
matrix Q0 � 0 such that p(x) = z>(x)Q0z(x) (i.e p is SOS), it is also true that

p(x) = z>(x)

(
Q0 +

∑
j

λjNj(x)

)
z(x).

SOS polynomials are helpful in finding Lyapunov functions because we can use
SOS Programming to find SOS polynomials which satisfy desired properties. For
example, if we want V (x) to be PDF, then one constraint in our SOS program will
be that

V (x)− εx>x, ε > 0

is SOS.

4.2 Proving Stability

To prove the stability of an equilibrium point for a given nonlinear system, we will
construct a Lyapunov function and determine stability from the properties of the

Lyapunov functions which we can find. Given properties of V and
dV

dt
, we can use

the Lyapunov Stability Theorems to prove the stability of equilibria.
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Theorem 16 If ∃V (x, t) such that V is LPDF and −dV

dt
≥ 0 locally, then xe is stable in

the sense of Lyapunov.

Theorem 17 If ∃V (x, t) such that V is LPDF and decrescent, and−dV

dt
≥ 0 locally, then

xe is uniformly stable in the sense of Lyapunov.

Theorem 18 If ∃V (x, t) such that V is LPDF and decrescent, and −dV

dt
is LPDF, then

xe is uniformly asymptotically stable in the sense of Lyapunov.

Theorem 19 If ∃V (x, t) such that V is PDF and decrescent, and −dV

dt
is LPDF, then xe

is globally uniformly asymptotically stable in the sense of Lyapunov.

Theorem 20 If ∃V (x, t) and h, α > 0 such that V is LPDF is decrescent, −dV

dt
is LDPF,

and
∀x ∈ Bh(xe),

∣∣∣∣∣∣∣∣dVdt
∣∣∣∣∣∣∣∣ ≤ α‖x− xe‖

The results of theorems 16 to 20 are summarized in table 1. Going down the rows

Conditions on V Conditions on −dV

dt
Conclusion

LPDF ≥ 0 locally Stable

LPDF, Decrescent ≥ 0 locally Uniformly Stable

LPDF, Decrescent LPDF Uniformly,
Asymptotically Stable

LPDF, Decrescent LDPF, ∃α > 0 such that∣∣∣∣∣∣∣∣dVdt
∣∣∣∣∣∣∣∣ ≤ α‖x− xe‖

Exponentially Stable

PDF, Decrescent PDF Globally, Uniformly,
Asymptotically Stable

Table 1: Summary of Lyapunov Stability Theorems

of table 1 lead to increasingly stricter forms of stability. Descresence appears to add

uniformity to the stability, while −dV

dt
being LPDF adds asymptotic convergence.
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However, these conditions are only sufficient, meaning if we cannot find a suitable
V , that does not mean that an equilibrium point is not stable.

One very common case where it can be difficult to find appropriate Lyapunov
functions is in proving asymptotic stability since it can be hard to find V such that

−dV

dt
is LPDF. In the case of autonomous systems, we can still prove asymptotic

stability without such a V .

Theorem 21 (LaSalle’s Invariance Principle) Consider a smooth function V : Rn →

R with bounded sub-level sets Ωc = {x|V (x) ≤ c} and ∀x ∈ Ωc,
dV

dt
≤ 0. Define

S =

{
x

∣∣∣∣dVdt = 0

}
and let M be the largest invariant set in S, then

∀x0 ∈ Ωc, x(t, t0, x0)→M as t→∞.

LaSalle’s theorem helps prove general convergence to an invariant set. Since V is
always decreasing in the sub-level set Ωc, trajectories starting in Ωc must eventually
reach S. At some point, they will reach the setM in S, and then they will stay there.
Thus if the set M is only the equilibrium point, or a set of equilibrium points, then
we can show that the system trajectories asymptotically converges to this equilib-

rium or set of equilibria. Moreover, if V (x) is PDF, and ∀x ∈ Rn,
dV

dt
≤ 0, then we

can show global asymptotic stability as well.

LaSalle’s theorem can be generalized to non-autonomous systems as well, but it is
slightly more complicated since the set S may change over time.

4.2.1 Indirect Method of Lyapunov

It turns out that we can also prove the stability of systems by looking at the lin-
earization around the equilibrium. Without loss of generality, suppose xe = 0. The
linearization at the equilibrium is given by

dx

dt
= f(x, t) = f(0, t) +

∂f

∂x

∣∣∣∣
x=0

x+ f1(x, t) ≈ A(t)x.

The function f1(x, t) is the higher-order terms of the linearization. The lineariza-
tion is a time-varying system. Consider the time-varying linear system

dx

dt
= A(t)x, x(t0) = x0.
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Definition 50 The state transition matrix Φ(t, t0) of a time-varying linear system is a
matrix satisfying

x(t) = Φ(t, t0)x0,
dΦ

dt
= A(t)Φ(t, t0), Φ(t0, t0) = I

The state transition matrix is useful in determining properties of the system.

1. supt≥t0 ‖Φ(t, t0)‖ = m(t0) <∞ =⇒ the system is stable at the origin at t0.

2. supt0≥0 supt≥t0 ‖Φ(t, t0)‖ = m < ∞ =⇒ the system is uniformly stable at the
origin at t0.

3. limt→∞ ‖Φ(t, t0)‖ = 0 =⇒ the system is asymptotically stable.

4. ∀t0, ε > 0, ∃T such that ∀t ≥ t0+T, ‖Φ(t, t0)‖ < ε =⇒ the system is uniformly
asymptotically stable.

5. ‖Φ(t, t0)‖ ≤Me−λ(t−t0) =⇒ exponential stability.

If the system was Time-Invariant, then the system would be stable so long as the
eigenvalues of A were in the open left-half of the complex plane. In fact, we could
use A to construct positive definite matrices.

Theorem 22 (Lyapunov Lemma) For a matrix A ∈ Rn×n, its eigenvalues λi satisfy
<(λi) < 0 if and only if ∀Q � 0, there exists a solution P � 0 to the equation

ATP + PA = −Q.

In general, we can use the Lyapunov Equation to count how many eigenvalues of
A are stable.

Theorem 23 (Tausskey Lemma) For A ∈ Rn×n and given Q � 0, if there are no eigen-
values on the jω axis, then the solution P to ATP + PA = −Q has as many positive
eigenvalues as A has eigenvalues in the complex left half plane.

The Lyapunov Lemma has extensions to the time-varying case.

Theorem 24 (Time-Varying Lyapunov Lemma) IfA(·) is bounded and for someQ(t) �
αI , the solution P (t) to A(t)TP (t) + P (t)A(t) = −Q(t) is bounded, then the origin is a
asymptotically stable equilibrium point.
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It turns out that uniform asymptotic stability of the linearization of a system cor-
responds to uniform, asymptotic stability of the nonlinear system.

Theorem 25 (Indirect Theorem of Lyapunov) For a nonlinear system whose higher-
order terms of the linearization are given by f(x, t), if

lim
‖x‖→0

sup
t≥0

‖f1(x, t)‖
‖x‖

= 0

and if xe is a uniformly asymptotic stable equilibrium point of
dz

dt
= A(t)z where A(t)

is the Jacobian at the xe, then xe is a uniformly asymptotic stable equilibrium point of
dx

dt
= f(x, t)

4.3 Proving Instability

Theorem 26 An equilibrium point xe is unstable in the sense of Lyapunov if ∃V (x, t)

which is decrescent, the Lie derivative
dV

dt
is LPDF, V (xe, t), and ∃x in the neighborhood

of xe such that V (x0, t) > 0.

4.4 Region of Attraction

For asymptotically stable and exponential stable equilibria, it makes sense to won-
der which initial conditions will cause trajectories to converge to the equilibrium.

Definition 51 If xe is an equilibrium point of a time-invariant system
dx

dt
= f(x), then

the Region of Attraction of xe is

RA(xe) = {x0 ∈ Rn| lim
t→∞

x(t, t0) = xe}

Suppose that we have a Lyapunov function V (x) and a region D such that V (x) >

0 and
dV

dt
< 0 in D. Define a sublevel set of the Lypunov function Ωc which is a

subset of D. We know that if x0 ∈ Ωc, then the trajectory will stay inside Ωc and
converge to the equilibrium point. Thus we can use the largest Ωc that is compact
and contained in D as an estimate of the region of attraction.

When we have a Quadratic Lyapunov Function, we can setD to be the largest circle
which satisfies the conditions on V , and the corresponding Ωc contained inside D
will be the estimate of the Region of Attraction.
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We can find even better approximations of the region of attraction using SOS pro-
gramming. Suppose we have a V which we used to prove asymptotic stability.
Then if there exists an s which satisfies the following SOS program, then the sub-
level set Ωc is an estimate of the Region of Attraction.

max
c,s

c

s.t s(x) is SOS,

−
(

dV

dt
+ εx>x

)
+ s(x)(c− V (x)) is SOS.

5 Nonlinear Feedback Control

In nonlinear control problems, we have a system

dx

dt
= f(x,u).

x is the state of the system, and u is the input to the system. Note that for simplic-
ity, the system is time-invariant. Further assume, without loss of generality, that
f(0, 0) = 0. The goal of nonlinear feedback control is to find a state feedback law
α(x) such that the equilibrium point xe = 0 is globally asymptotically stable for
the closed loop system

dx

dt
= f(x, α(x)).

Sometimes, the control impacts the state evolution in an affine manner.

Definition 52 A control affine system is given by the differential equation

dx

dt
= f(x) +G(x)u

where G(x) is a matrix dependent on the state vector x.

When designing controllers, there is a wide variety of techniques we can use. Some
simple techniques involve canceling out various types of nonlinearities in the sys-
tem using the input. Here are some examples.

1. Set u such that it cancels out nonlinear terms and adds a stable linear term,
effectively making the nonlinear system behave linear in the closed loop.

2. Set u to cancel destabilitizing nonlinear terms and add a stable linear term,
so the stable nonlinearities help the input drive the system to equilibrium.

3. Set u to cancel destabilizing nonlinear terms, so the nonlinear system dy-
namics drive the system to equilibrium.
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4. Set u to dominate destabilizing terms so they have a minimal impact on the
overall system behavior.

While these techniques can work, there are also more principled ways of designing
controllers to satisfy different criteria, particularly for the case of control affine
systems.

5.1 Control Lyapunov Functions

If we can find an α(x) that makes the origin globally asymptotically stable, then
the converse Lyapunov theorem says that we can find a corresponding Lyapunov
function for the system.

∀x 6= 0,
dV

dt
< 0 =⇒ (∇xV )>f(x, α(x)) < 0

=⇒ ∃u s.t (∇xV )>f(x,u) < 0

⇔ inf
u

(∇xV )>f(x,u) < 0

This result motivates the following definition.

Definition 53 A continuously differentiable, PDF, radially unbounded V : Rn → R is a

Control Lyapunov Function for the system
dx

dt
= f(x,u) if

∀x 6= 0, inf
u

(∇xV )>f(x,u) < 0

Once we have a control lyapunov function, we can prove that it is possible to find
a state feedback law that will make the origin globally asymptotically stable.

Theorem 27 Suppose f is Lipschitz and V is a control Lyapunov function, then there
exists a smooth function α such that the origin is a globally asympototically stable equilib-

rium point of
dx

dt
= f(x, α(x)).

Suppose that we have a control affine system, and we want to construct a control
lyapunov function for the system.

inf
u

∂V

∂x
f(x,u) = inf

u
LfV +

∑
i

LgiV ui < 0

Here, each gi(x) is a column of G(x). If ∀i, LgiV = 0, then definition 53 is satisfied
so long as LfV < 0.
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Theorem 28 A function V is a control lyapunov function for a control affine system

dx

dt
= f(x) +

∑
i

gi(x)ui

if
LgiV ∀i =⇒ LfV ≤ 0

Notice that the condition in theorem 28 is essentially saying that the l2-norm of the
vector composed of the LgiV is equal to 0. The choice of CLF is important because
different CLFs have different properties when used to derive controllers.

Definition 54 A CLF V (x) satisfies the small control property if ∀ε > 0, ∃δ > 0 such
that x ∈ Bδ(0), then if x 6= 0,∃u ∈ Bε(0) satisfying

dV

dt
= LfV + LGV

Tu < 0.

The small control property means that CLF will lead to a controller which has a
small value that does not get too large when close to the equilibrium.

Given a control lyapunov function for a control affine system V (x,u), we can de-
vise a controller which stabilizes the system. In particular, we need

dV

dt
(x, u) = LfV (x) + LGV (x)>u ≤ 0.

Hence, let

u =

{
0, if LfV < 0,

(LGV LGV
>)−1(−LfV LGV >), if LfV > 0.

When the plant dynamics are naturally stabilizing, this controller exerts no control
effort. When the plant dynamics are not naturally stabilizing, then the controller
applies some control to stabilize the system. We can show that this is a minimum
norm controller as it solves the optimization problem

min u>u

s.t LfV + LGV
>u ≤ 0.

Another type of controller is known as the Sontag controller.

Theorem 29 Suppose V : Rn → R is a CLF for SISO control affine system
dx

dt
=

f(x) + g(x)u where f(0) = 0 where f and g are Lipschitz. Then the Sontag feedback
control law is given by

αS(x) =

{
−LfV−

√
(LfV )2+(LgV )4

LgV
, if LgV 6= 0,

0, else.
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makes the origin globally asymptotically stable. Moreover, αS(x) is continuous everywhere
except x = 0, is continuous at x = 0 if V satisfies the small control property, and if
V (x) is K + 1 times continuously differentiable and f(x), g(x) are K times continously
differentiable ∀x 6= 0, then αS is K times continuously differentiable.

5.2 Feedback Linearization

Since we have a large number of tools which allow us to control linear systems,
it would be ideal if we could somehow leverage those tools for nonlinear control.
Feedback linearization is the process of finding a feedback control law u = α(x)

such that under a nonlinear change of coordinates z = Φ(x), the system
dx

dt
=

f(x, α(x)) behaves like a linear system
dz

dt
= Az. When the system is control-

affine, there are well-established results which help us do this.

5.2.1 SISO Case

Suppose we have a SISO control-affine system

dx

dt
= f(x) + g(x)u

y = h(x)

Definition 55 A SISO control affine system with an equilibrium point xe has strict rela-
tive degree γ if in a neighborhood U around the equilibirum point, LgL

γ−1
f h(x) is bounded

away from 0 and
∀i = 0, · · · , γ − 2, LgL

γ−1
f h(x) = 0

To understand relative degree, suppose we differentiate y once

dy

dt
= Lfh+ Lghu.

If ∀x ∈ U, Lgh(x) = 0 where U is some region around the equilibrium, then

∀x ∈ U, dy

dt
= Lfh(x).

If we differentiate again, then

∀x ∈ U, d2y

dt2
= L2

fh(x) + LgLfh(x).
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Suppose that ∀x ∈ U, LgLfh(x) = 0, then we can differentiate again. At some
point, after γ differentiations, we will get

∀x ∈ U, dγy

dtγ
= Lγfh(x) + LgL

γ−1
f h(x)u.

Therefore, the relative degree of the system is essentially telling us which deriva-
tive of the output that we can control. By sequentially taking derivatives, we are
essentially looking at the system

y = h(x)

dy

dt
= Lfh(x)

d2y

dt2
= L2

fh(x)

...
dγy

dtγ
= Lγfh(x) + LgL

γ−1
f h(x)

Suppose ∀i = 0, · · · , γ − 1, we let ξi(x) =
diy

dti
. These are γ linearly independent

coordinates. Since the distribution

∆(x) = span{g(x)}

is involutive, it is integrable, and so there must be n− 1 functions ηi such that

∀x ∈ U, (∇xηi)
>g(x) = 0.

We can now choose n − γ of them which are linearly independent of the ξi and
linearly independent with each other, and this forms a change of coordinates



ξ1

...

ξγ

η1

...

ηn−γ


= Φ(x) =



h(x)

Lfh(x)
...

Lγ−1
f

η1

...

ηn−γ


.

This change of coordinates allows us to put the system into a canonical form.
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Definition 56 The normal form of a SISO control affine system is given by

dξ1

dt
= ξ2

dξ2

dt
= ξ3

...
dξγ
dt

= b(ξ,η) + a(η, ξ)u

dη

dt
= q(ξ,η),

y = η1

When the original system is given by
dx

dt
= f(x) + g(x)u, then

b(ξ,η) = Lγfh(Φ−1(ξ,η)) a(ξ,η) = LgL
γ−1
f h(Φ−1(ξ,η))

With this parameterization, it is quite easy to see how we can make our system
behave linearly. In particular, choose

u =
1

a(ξ,η)
(−b(ξ,η) + v)

where v is some control input. Then the system becomes

dξ1

dt
= ξ2

dξ2

dt
= ξ3

...
dξγ
dt

= v

dη

dt
= q(ξ,η)

y = η1

, which is a linear system. Therefore, we can design a linear feedback controller
v = α(x) where we have all of the tools of linear control at our disposal. However,
notice that the ηi cannot be impacted by the control effort. These are known as the
internal dynamics of the system. When ξ = 0, then

dη

dt
= q(0,η)

are known as the Zero Dynamics of the system. Zero dynamics for a system can
be dangerous because if they are unstable, then the system could be blowing up.
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When γ = n, then there are no zero dynamics. When this happens, we say the
system is Full State Linearizable. Fortunately, there are necessary and sufficient
conditions which guarantee full state linearization.

Theorem 30 There exists a function h such that a control affine system
dx

dt
= f(x) +

g(x)u has relative degree n at x0 if and only if[
g(x) · · · adn−2

f g(x) adn−1
f g(x)

]
has rank n and [

g(x) · · · adn−3
f g(x) adn−2

f g(x)
]

has rank n− 1 and is involutive in the neighborhood of x0. The h is chosen to satisfy

(∇xh)>
[
g(x) · · · adn−3

f g(x) adn−2
f g(x)

]
= 0

5.2.2 MIMO Case

Suppose instead we have a MIMO control affine system where

dx

dt
= f(x) +G(x)u

y = h(x)

We will assume that the number of outputs is equal to the number of inputs (i.e
y,u ∈ Rm). To linearize the system, we can take the same idea of relative degree
from the SISO case and apply it to the MIMO case. Define γj to be the lowest
derivative of yj which is impacted by at least one input.

dγ1y1

dtγ1
...

dγmym
dtγm

 =


Lγ1f h1(x)

...

Lγmf hm(x)

+A(x)u, A(x) =


Lg1L

γ1−1
f h1(x) · · · LgmL

γ1−1
f h1(x)

... . . . ...

Lg1L
γm−1
f hm(x) · · · LgmL

γm−1
f hm(x)



Definition 57 A square control affine system has a vector relative degree (γ1, · · · , γm) at
x0 ∈ U if A(x0) is nonsingular and

∀1 ≤ i ≤ m, 1 ≤ j ≤ m, 0 ≤ k ≤ γj − 2, ∀x ∈ U, LgiLkfhj(x) = 0
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As before, we can assign
diyj
dti

= ξji as a partial change of coordinates and then
choose linearly independent η.

Definition 58 The normal form of a square MIMO system is given by

dη

dt
= q(ξ,η) + p(ξ,η)u

dξji
dt

= ξji+1, ∀j, ∀i < γj − 1

dξjγj−1

dt
= bj(ξ,η) + aj(ξ,η)>u

As before the
dη

dt
represent the internal dynamics of the system that are not im-

pacted by the control. As with the linear case, we can design a controller

u = A−1(x)



Lγ1f h1(x)

...

Lγmf hm(x)

+ v


which renders the system linear. We can now choose v where each entry of v
controls a different output. For this reason, we callA(x) the decoupling matrix. As
in the SISO case, unless

∑
j γj = n, there are zero dynamics to the system.

Theorem 31 A control affine square system
dx

dt
= f(x) + G(x)u has vector relative

degree
∑

j γj = n if and only if ∆i is involutive for all i ≤ n− 2, ∆i has constant rank for
all 1 ≤ i ≤ n− 1 and ∆n−1 has rank n where

∆0(x) = span{g1(x), · · · , gm(x)}

∆i(x) = span{
k

ad
f
gi(x) | ∀0 ≤ k ≤ i, 1 ≤ j ≤ m}, ∀1 ≤ i ≤ n− 1

5.2.3 Dynamic Extension

Sometimes, we can use full-state linearization even if h does not satisfy the con-
ditions in theorem 30. We do this by adding additional states to the system and
corresponding pseudo-control inputs which help control these states. Sometimes,
this can be done in a way which makes the extended system full-state linearizable.

29



5.2.4 Sliding Mode Control

In sliding mode control, we design a controller

u = β(x)sgn(s)

where s(x) describes a manifold called the “sliding manifold”. Sliding mode con-
trollers have two states

1. Reaching Mode

2. Sliding Mode

During the reaching mode, the controller drives the state towards the sliding man-
ifold s(x) = 0. We choose s such that on the manifold, when the system is in
sliding mode, the system naturally converges asymptotically to the equilibrium.
If s(x) = 0 is an invariant manifold, then the system will smoothly travel along
the manifold to equilibrium. If the sliding manifold is not invariant, then the state
will chatter around the manifold towards equilibrium as the controller continu-
ously drives it back to the manifold once it leaves. To choose s, we need to find
a CLF V (s) which converges to 0 in finite time when applying the sliding mode
controller.

5.2.5 Backstepping

Definition 59 A system expressed in strict feedback form is given by

dx

dt
= f0(x) + g0(x)ξ1

dξ1

dt
= f1(x, ξ1) + g1(x, ξ1)ξ2

...
dξk
dt

= fk(x, ξ1, · · · , ξk) + gk(x, ξ1, · · · , ξk)u

When systems are expressed in this way, we have a convenient method of design-
ing controllers.

Theorem 32 (Backstepping Lemma) Suppose there is a continuously differentiable u =
α(x) and a CLF V (x) such that

LfV + LgV α ≤ −W
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where W is a positive semi-definite function for the system
dx

dt
= f(x) + g(x)u. Then for

the system
dx

dt
= f(x) + g(x)ξ

dξ

dt
= u

the function

Va(x, ξ) = V (x) +
1

2
(ξ − α(x))2

is a valid CLF and the control input

u = −c(ξ − α(x)) + (∇xα)>(f(x) + g(x)ξ)− (∇xV )>g(x), c > 0

is a stabilizing controller.

If we apply theorem 32 to a system expressed in strict feedback form, then we can
recursively define controllers until we arrive at a controller for the full system.
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