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1 Hilbert Space Theory

Complex random variables form a Hilbert space with inner product 〈X, Y 〉 =
E [XY ∗]. If we have a random complex vector, then we can use Hilbert Theory
in a more efficient manner by looking at the matrix of inner products. For simplic-
ity, we will call this the “inner product” of two complex vectors.

Definition 1 Let the inner product between two random, complex vectors Z1,Z2 be de-
fined as

〈Z1,Z2〉 = E [Z1Z2
∗]

The ij-th entry of the matrix is simply the scalar inner product E
[
XiY

∗
j

]
where

Xi and Yj are the ith and jth entries of X and Y respectively. This means the
matrix is equivalent to the cross correlation RXY between the two vectors. We can
also specify the auto-correlation RX = 〈X,X〉 and auto-covariance ΣX = 〈X −
E [X] ,X−E [X]〉. One reason why we can think of this matrix as the inner product
is because it also satisfies the properties of inner products. In particular, it is

1. Linear: 〈α1V1 + α2V2,u〉 = α1〈V1,u〉+ α2〈V2,u〉.

2. Reflexive: 〈U ,V 〉 = 〈V ,U〉∗.

3. Non-degeneracy: 〈V ,V 〉 = 0⇔ V = 0.

Since we are thinking of the matrix as an inner product, we can also think of the
norm as a matrix.

Definition 2 The norm of a complex random vector is given by ‖Z‖2 = 〈Z,Z〉.

When thinking of inner products as matrices instead of scalars, we must rewrite
the Hilbert Projection Theorem to use matrices instead.

Theorem 1 (Hilbert Projection Theorem) The minimization problem minX̂(Y ) ‖X̂(Y )−
X‖2 has a unique solution which is a linear function of Y . The error is orthogonal to the
linear subspace of Y (i.e 〈X − X̂,Y 〉 = 0)

When we do a minimization over a matrix, we are minimizing it in a PSD sense,
so for any other linear functionX ′,

‖X − X̂‖2 � ‖X −X ′‖2.
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1.1 Innovations

Suppose we have jointly distributed random variables Y0, Y1, · · · , Yn. Ideally, we
would be able to “de-correlate” them so each new vector E0 captures the new in-
formation which is orthogonal to previous random vectors in the sequence. Since
vectors of a Hilbert Space operate like vectors in Rn, we can simply do Gram-
Schmidt on the {Yi}ni=0.

Definition 3 Given jointly distributed random vectors {Yi}ni=0 with Li = span{Yj}ij=0,
the ith innovation Ei is given by

Ei = Yi − proj(Yi|Li−1) = Yi −
i−1∑
j=0

〈Yi, Ej〉
‖Ej‖2

Ej

Innovations have two key properties.

1. ∀i 6= j, 〈Ei, Ej〉 = 0

2. ∀i, span{Yj}ij=0 = span{Ej}ij=0

We can also write innovations in terms of a matrix where ε = AY where ε =[
E0 E1 · · · En

]T
and Y =

[
Y0 Y1 · · · Yn

]T
. Since each Ei only depends on

the previous Yi, then A must be lower triangular, and because we need each Ei to
be mutually orthogonal, Rε should be diagonal. Rε = ARYA

∗, so if RY � 0, then
we can use its unique LDL decomposition RY = LDL∗ and let A = L−1.

2 Linear Estimation

In Linear Estimation, we are trying to estimate a random variable X using an
observation Y with a linear function of Y . If Y is finite dimensional, then we can
say X̂(Y ) = WY whereW is some matrix. Using theorem 1 and the orthogonality
principle, we know that

〈X −WY ,Y 〉 = 0⇔ RXY = WRY

This is known as the Normal Equation. If RY is invertible, then we can apply
the inverse to find W . Otherwise, we can apply the pseudoinverse R†Y to find W ,
which may not be unique. If we want to measure the quality of the estimation,
sinceX = X + (X − X̂),

‖X‖2 = ‖X̂‖2 + ‖X − X̂‖2 =⇒
‖X − X̂‖2 = ‖X‖2 − ‖X̂‖2 = RX −RXYR

−1
Y RY X
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2.1 Affine Estimation

If we allow ourselves to consider an affine function for estimation X̂(Y ) = WY +b,
then this is equivalent to instead finding an estimator

X̂(Y ′) = WY ′ where Y ′ =

Y
1


This is equivalent to the following orthogonality conditions:

1. 〈X − X̂,Y 〉

2. 〈X − X̂, 1〉

Solving gives us

X̂(Y ) = W (Y − µY ) + µx where WΣY = ΣXY .

ΣY and ΣXY are the auto-covariance and cross-covariance respectively. Recall that
if X

Y

 ∼ N
µX

µY

 ,
 ΣX ΣXY

ΣY X ΣY


then

X|Y ∼ N
(
µX + ΣXY Σ−1Y (Y − µY ),ΣX − ΣXY Σ−1Y ΣY X

)
Thus in the Joint Gaussian case, the mean of the conditional distribution is the best
affine estimator ofX using Y , and the covariance is the estimation error. This has
two interpretations.

1. Under the Gaussian assumption, the best nonlinear estimator E [X|Y ] is affine

2. Gaussian random variables are the hardest predict because nonlinearity should
improve our error, but it does not in the Gaussian case. This means if affine
estimation works well, we shouldn’t try and find better non-linear estima-
tors.

2.2 Least Squares

The theory of linear estimation is very closely connected with the theory behind
least squares in linear algebra. In least squares, we have a deterministic x and
assume nothing else about it, meaning we are looking for an unbiased estimator.
theorem 2 tells us how to find the best linear unbiased estimator in a linear setting.

Theorem 2 (Gauss Markov Theorem) Suppose that Y = Hx + Z and Z is zero-
mean with 〈Z,Z〉 = I , H is full-column rank, then x̂b = (H∗H)−1H∗Y is the best linear
unbiased estimator.
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2.2.1 Recursive Least Squares

Suppose we extend the least squares setup to allow a stochastic, but fixed,X where
〈X,X〉 = Π0. At each timestep, we receive observations of X such that Y i =
h∗iX + V i where 〈V i,V j〉 = δ[i, j] and 〈X,V 〉. Define

Y i =


Y 0

Y 1

· · ·

Y i

 Hi =


h∗0

h∗1
...

h∗i

 V i =


V 0

V 1

· · ·

V i


Then our setup becomes Y i = HiX + V i.

RXY i = Π0H
∗
i RY i = (HiΠ0H

∗
i + I)

Applying theorem 1 and solving the normal equation, we see

W = Π0H
∗
i (HiΠ0H

∗
i + I)−1 = Π0H

∗
i (I −Hi(Π

−1
0 +H∗iHi)

−1H∗i )

= Π0(I −H∗iHi(Π
−1
0 +H∗iHi)

−1)H∗i
= Π0((Π

−1
0 +H∗iHi)(H

∗
iHi)

−1(H∗iHi)(Π
−1
0 +H∗iHi)

−1 −H∗iHi(Π
−1
0 +H∗iHi)

−1)H∗i
= Π0Π

−1
0 (H∗iHi)

−1H∗iHi(Π
−1
0 +H∗iHi)

−1H∗i
= (Π−10 +H∗iHi)

−1H∗i

Suppose we want to do this in an online fashion where at each timestep i, we only
use the current hi,Y i and our previous estimate X i−1. Let Pi = (Π−10 + H∗iHi)

−1.
Then

P−1i = Π0 +
i∑

k=0

hkh
∗
k = P−1i−1 + hih

∗
i .

By applying the Sherman-Morrison-Woodbury identity, we can see that

Pi = Pi−1 = Pi−1
hih
∗
i

1 + h∗iP−1hi
Pi−1

Theorem 3 (Recursive Least Squares Update) The best least squares estimate using
i + 1 data points can be found by updating the best least squares estimate using i data
points using

X̂ i = X̂ i−1 +
Pi−1hi

1 + h∗iPi−1hi
(Y i − h∗i X̂ i−1)
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Notice that this formula scales an innovation in order to improve the current esti-
mate ofX .

Just as we could compute a recursive update, we can also compute a “downdate”
where we forget a particular observation. More concretely, we want to use X̂ i

to find X̂ i|k, the best linear estimator of X using Y 0,Y 1, · · · ,Y k−1,Y k+1, · · · ,Y i.
Defining Pi|k = (Π−10 +H∗i|kHi|k)

−1,

P−1i|k = Π−10 +
i∑

j=0,j 6=k

hjh
∗
j = P−1i − hkh−1k .

Applying the Sherman-Morrison-Woodbury identity,

Pi|k = Pi + Pi
hkh

∗
k

h∗kPihk − 1
Pi

Theorem 4 (Recursive Least Squares Downdate) The best least squares estimate us-
ing all but the kth observation can be found by updating the best least squares estimate
using all data points using

X̂ i|k = X̂i +
Pihk

h∗kPihk − 1
(Yk − h∗kX̂ i)

3 Discrete Time Random Processes

Definition 4 A Discrete-Time Random Process is a countably infinite collection of ran-
dom variables on the same probability space {Xn : n ∈ Z}.

Discrete Time Random Processes have a mean function µn = E [Xn] and an auto-
correlation function RX(n1, n2) = E

[
Xn1X

∗
n2

]
3.1 Wide-Sense Stationary Random Processes

Definition 5 A Wide-Sense Stationary Random Process is a disrete-time random process
with constant mean, finite variance, and an autocorrelation function that can be re-written
to only depend on n1 − n2.

We call this wide-sense stationary because the mean and covariance do not change
as the process evolves. In a strict-sense stationary process, the distribution of each
random variable in the process would not change.

Definition 6 A WSS process Z ∼ WN (0, σ2) is a white noise process with variance σ2

if and only if E [Zn] = 0 and E [ZnZ
∗
m] = σ2δ[n,m].
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3.1.1 Spectral Density

Recall that the Discrete Time Fourier Transform is given by

X(ejω) =
∞∑

n=−∞

x[n]e−jωn.

The Inverse Discrete Time Fourier Transform is given by

x[n] =
1

2π

∫ π

−π
X(ejω)ejωndω.

Since the DTFT is an infinite summation, it may or may not converge.

Definition 7 A signal x[n] belongs to the l1 class of signals if the series converges abso-
lutely. In other words,

∞∑
k=−∞

|x[k]| <∞.

This class covers most real-world signals.

Theorem 5 If x[n] is a l1 signal, then the DTFT X(ejω) converges uniformly and is well-
defined for every ω. X(ejω) is also a continuous function.

Definition 8 A signal x[n] belongs to the l2 class of signals if it is square summable. In
other words,

∞∑
k=−∞

|x[k]|2 <∞.

The l2 class contains important functions such as sinc.

Theorem 6 If x[n] is a l2 signal, then the DTFT X(ejω) is defined almost everywhere and
only converges in the mean-squared sense:

lim
N→∞

∫ π

−π

∣∣∣∣∣
(

N∑
k=−N

x[k]e−jωn

)
−X(ω)

∣∣∣∣∣
2

dω = 0

Tempered distributions like the Dirac Delta function are other functions which are
important for computing the DTFT, and they arise from the theory of generalized
functions.

Suppose we want to characterize the signal using its DTFT.
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Definition 9 The energy of a deterministic, discrete-time signal x[n] is given by∑
n∈Z

|x[n]|2.

The autocorrelation of x[n], given by a[n] = x[n] ∗ x∗[−n], is closely related to the
energy of the signal since a[0] =

∑
n∈Z |x(n)|2.

Definition 10 The Energy Spectral Density x[n] with auto-correlation a[n] is given by

A(ejω) =
∑
n∈Z

a[n]e−jωn

We call the DTFT of the autocorrelation the energy spectral density because, by the
Inverse DTFT,

a[0] =
1

2π

∫ π

−π
A(ejω)dω.

Since summing over each frequency gives us the energy, we can think of A(ejω) as
storing the energy density of each spectral component of the signal. We can apply
this same idea to wide-sense stationary stochastic processes.

Definition 11 The Power Spectral Density of a Wide-Sense Stationary random process is
given by

SX(ejω) =
∑
k∈Z

RX(k)e−jωk.

Note that when considering stochastic signals, the metric changes from energy to
power. This is because if Xn is Wide-Sense Stationary, then

E

[∑
n∈Z

|Xn|2
]

=∞,

so energy doesn’t even make sense. To build our notion of power, let AT (ω) be a
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truncated DTFT of the auto-correlation of a wide-sense stationary process, then

lim
T→∞

E [AT (ejω)]

2T + 1
= lim

T→∞

1

2T + 1

(
T∑

n=−T

x[n]e−jωn

)(
T∑

m=−T

x∗[m]ejωm

)

= lim
T→∞

1

2T + 1

∑
n,m∈[−T,T ]

E [x[n]x∗[m]] e−jω(n−m)

= lim
T→∞

1

2T + 1

∑
n,m∈[−T,T ]

Rx(n−m)e−jω(n−m)

= lim
T→∞

2T∑
k=−2T

RX(k)e−jωk
(

1− |k|
2T + 1

)

=
∞∑

k=−∞

RX(k)e−jωk

The DTFT of the auto-correlation function naturally arises out of taking the energy
spectral density and normalizing it by time (the truncated sequence is made of
2T + 1 points). In practice, this means to measure the PSD, we need to either use
the distribution of the signal to compute RX , or estimate the PSD by averaging
multiple realizations of the signal.

The inverse DTFT formula tells us that we can represent a deterministic, discrete-
time signal x[n] as a sum of complex exponentials weighted by X(ejω)dω

2π
. This rep-

resentation has an analog for stochastic signals as well.

Theorem 7 (Cramer-Khinchin) For a complex-valued WSS stochastic process Xn with
power spectral density SX(ω), there exists a unique right-continuous stochastic process
F (ω), ω ∈ (−π, π] with square-integrable, orthogonal increments such that

Xn =

∫ π

−π
ejωndF (ω)

where for any interval [ω1, ω2], [ω3, ω4] ⊂ [−π, π],

E [(F (ω2)− F (ω1))(F (ω4)− F (ω3))
∗] = f((ω1, ω2] ∩ (ω3, ω4])

where f is the structural measure of the stochastic process and has Radon-Nikodym deriva-
tive SX(ejω)

2π
.

Besides giving us a decomposition of a WSS random process, theorem 7 tells a few
important facts.

1. ω1 6= ω2 =⇒ 〈dF (ω1), dF (ω2)〉 = 0 (i.e different frequencies are uncorre-
lated).

2. E [|dF (ω)|2] = SX(ejω)dω
2π
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3.1.2 Z-Spectrum

Recall that the Z-transform converts a discrete-time signal into a complex repre-
sentation. It is given by

X(z) =
∞∑

n=−∞

x[n]z−n.

It is a special type of series called a Laurent Series.

Theorem 8 A Laurent Series will converge absolutely on an open annulus

A = {z|r < |z| < R}

for some r and R.

We can compute r and R using the signal x[n].

r = lim sup
n→∞

|x[n]|
1
n ,

1

R
= lim sup

n→∞
|x[−n]|

1
n .

In some cases, it can be useful to only compute the Z-transform of the right side of
the signal.

Definition 12 The unilateral Z-transform of a sequence x[n] is given by

[X(z)]+ =
∞∑
n=0

x[n]z−n

If the Z-transform of the sequence is a rational function, then we can quickly com-
pute what the unilateral Z-transform will be by leveraging its partial fraction de-
composition.

Theorem 9 Any arbitrary rational function H(z) with region of convergence including
the unit circle corresponds with the unilateral Z-transform

[H(z)]+ = r0 +
m∑
i=1

li∑
k=1

rik
(z + αi)k

+
n∑

i=m+1

li∑
k=1

rik
βki

where |αi| < 1 < |βi|.

Definition 13 For two jointly WSS processes Xn, Yn, the z-cross spectrum is the Z-
Transform of the correlation function RY X(k) = E

[
YnX

∗
n−k
]
.

SY X(z) =
∑
k∈Z

RY X(k)z−k
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Using this definition, we can see that

SXY (z) = S∗Y X(z−∗).

We can also look at the Z-transform of the auto-correlation function of a WSS pro-
cess X to obtain SX(z).

Definition 14 For a rational function SX(z) with finite power
(∫ π
−π SX(ejω)dω <∞

)
and is strictly positive on the unit circle, the canonical spectral factorization decomposes
SX(z) into a product of a re > 0 and the transfer function of a minimum phase system
L(z) with L(∞) = 1

SX(z) = L(z)reL
∗(z−∗)

Because L(z) is minimum phase and L(∞) = 1, it must take the form

L(z) = 1 +
∞∑
i=1

l[i]z−i

since minimum phase systems are causal. Using definition 14, we can express
SX(z) as the product of a right-sided and left-sided process.

SX(z) = (
√
reL(z))(

√
reL

∗(z−∗)) = S+
X(z)S−X(z)

Note that S−X(ejω) =
(
S+
X(ejω)

)∗. Using the assumptions built into definition 14, we
can find a general form for L(z) since we know SY (z) takes the following form

SY (z) = re

∏m
i=1(z − αi)(z−1 − α∗i )∏n
i=1(z − βi)(z−1 − β∗i )

|αi| < 1, |βi| < 1, re > 0.

If we let the z − αi and z − βi terms be part of L(z), then

L(z) = zn−m
∏m

i=1(z − αi)∏n
i=1(z − βi)

.

3.2 Markov Processes

Definition 15 We say that random variables X, Y, Z form a Markov Triplet X—Y—Z if
and only if X and Z are conditionally independent on Y

Mathematically, Markov triplets satisfy three properties.

1. p(x, z|y) = p(x|y)p(z|y)
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2. p(z|x, y) = p(z|y)

3. p(x|y, z) = p(x|y)

Because of these rules, the joint distribution can be written as p(x, y, z) = p(x)p(y|x)p(z|y).

Theorem 10 Random variables X, Y, Z form a Markov triplet if and only if there exist
φ1, φ2 such that p(x, y, z) = φ1(x, y)φ2(y, z).

To simplify notation, we can define Xn
m = (Xm, Xm+1, · · · , Xn) and Xn = Xn

1 .

Definition 16 A Markov Process is a Discrete Time Random Process {Xn}n≥1 where
Xn—Xn−1—Xn−2 for all n ≥ 2

Because of the conditional independence property, we can write the joint distribu-
tion of all states in the Markov process as

p(xn) =
n∏
t=1

p(xt|xt−1) =
n∏
t=1

p(xt|xt−1).

The requirement for X—Y—Z to satisfy p(x, y, z) = p(x)p(y|x)p(z|y) is a very strict
requirement. If we wanted to create a “wider” requirement of Markovity, then we
could settle for X̂(Y ) = X̂(Y, Z) where X̂ is the best linear estimator ofX since this
property is satisfied by all Markov triplets, but does not imply a Markov Triplet.

Definition 17 Random variables X, Y, Z form a Wide Sense Markov Triplet X—Y—Z
if and only if the best linear estimator of X given Y is identical to the best linear estimator
of X given Y and Z.

X̂(Y ) = X̂(Y, Z)

Definition 18 A stochastic process {Yi}ni=0 is a Wide-Sense Markov Process if and only
if for any 1 ≤ i ≤ n− 1, Yi+1—Yi—Y i−1 forms a Wide-Sense Markov Triplet.

All Wide-Sense Markov models have a very succint representation.

Theorem 11 A process X is Wide-Sense Markov if and only if X i+1 = FiX i + GiU i

and

〈

 Ui
X0

 ,
Uj
X0

〉 =

Qiδ[i− j] 0

0 Π0


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3.2.1 Hidden Markov Processes

Definition 19 If {Xn}n≥1 is a Markov Process, then {Yn}n≥1 is a Hidden Markov Process
if we can factorize the conditional probability density

p(yn, xn) =
n∏
i=1

p(yi|xi)

We can think of Y as a noisy observation of an underlying Markov Process. The
joint distribution of {Xn}n≥1 and {Yn}n≥1 can be written as

p(xn, yn) = p(xn)p(yn|xn) =
n∏
t=1

p(xt|xt−1)
n∏
i=1

p(yi|xi).

Hidden Markov Models can be represented by undirected graphical models. To
create an undirected graphical model,

1. Create a node for each random variable.

2. Draw an edge between two nodes if a factor of the joint distribution contains
both nodes.

Undirected graphical models of Hidden Markov Processes are useful because they
let us derive additional Markov dependepencies between groups of variables.

Theorem 12 For 3 disjoint sets S1, S2, S3 of notes in a graphical model, if any path from
S1 to S3 passes through a node in S2, then S1—S2—S3.

3.2.2 State-Space Models

Suppose we have a discrete-time random process which evolves in a recursive
fashion, meaning the current state depends in some way on the previous state. We
can express this recursion with a set of equations.

Definition 20 The standard state space model describes random processes which describe
the evolution of state vectorsX i and observation vectors Y i according to the equations{

X i+1 = FiX i +GiU i

Y i = HiX i + V i

with initial condition

〈


X0

U i

V i

 ,

X0

U j

V j

〉 =


Π0 0 0

0 Qiδ[i− j] Siδ[i− j]

0 S∗i δ[i− j] Riδ[i− j]


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From theorem 11, we can easily see that state space models are Wide-Sense Markov.
Note thatUi and Vi are white noise, and that the dynamics of the system can change
at every time step. From these equations, we can derive six different properties.
Let Πi = 〈X i,X i〉 and Φi,j =

∏i−1
k=j Fk and Φi,u = I .

1. ∀i ≥ j, 〈U i,Xj〉 = 0, 〈V i,Xj〉 = 0

2. ∀i > j, 〈U i,Y j〉 = 0, 〈V i,Y j〉 = 0

3. ∀i, 〈U i,Y i〉 = Si, 〈V i,Y i〉 = Ri

4. Πi+1 = FiΠiF
∗
i +GiQiG

∗
i

5.

〈X i,Xj〉 =

{
Φi,jΠj i ≥ j

ΠiΦ
∗
j,i i ≤ j

6.

〈Y i,Y j〉 =


HiΦi,j+1Nj i > j

Ri +HiΠiH
∗
i i = j

N∗i Φ∗j,i+1H
∗
j i < j

where Ni = FiΠiH
∗
i +GiSi

4 Filtering

If we think of our signal as a discrete time random process, then like a normal
deterministic signal, we can try filtering our random process. Filtering can either

H(z)
Xn Yn

Figure 1: Filtering a Disrete Time Random Process with an LTI system with transfer
function H(z)

be accomplished with an LTI system or some other non-linear/non-time-invariant
system just like with deterministic signals.

4.1 LTI Filtering on WSS Processes

If we use an LTI filter on a WSS process, then we can easily compute how the filter
impacts the spectrum of the signal.

Theorem 13 When Y (n) is formed by passing a WSS process Xn through a stable LTI
system with impulse response h[n] and transfer functionH(z), then SY (z) = H(z)SX(z)H∗(z−∗)
and SY X(z) = H(z)SX(z). If we have a third process Zn that is jointly WSS with
(Yn, Xn), then SZY (z) = SZX(z)H∗(z−∗).

15



This gives us an interesting interpretation of the spectral factorization (definition 14)
since it essentially passing a WSS process with auto-correlation RW (k) = reδ[n]
through a minimum-phase filter with transfer function L(z).

4.2 Wiener Filter

Suppose we have a stochastic WSS process Yn that is jointly WSS with Xn and that
we want to find the best linear estimator of Xn using Yn. The best linear estimator
of Xn given the observations Yn can be written as

X̂n =
∑
m∈Z

h(m)Yn−m = h[n] ∗ Yn.

This is identical to passing Yn through an LTI filter. If we restrict ourselves to using
{Yi}ni=−∞ to estimate Xn, then the best linear estimator can be written as

X̂n =
∞∑
m=0

h(m)Yn−m = h[n] ∗ Yn.

It is identical to passing Yn through a causal LTI filter. Since we are trying to find a
best linear estimator, it would be nice if each of the random variables we are using
for estimating were uncorrelated with each other. In other words, instead of using
Y directly, we want to transform Y into a new process W where RW (k) = δ[k].
This transformation is known as whitening. From the spectral factorization of Y ,
we know if we use the filter G(z) = 1

S+
Y (z)

then

SW (z) =
SY (z)

S+
Y (z)S+∗

Y (z−∗)
=

SY (z)

S+
Y (z)S−Y (z)

= 1.

Now we want to find the best linear estimator of X using our new process W by
designing an LTI filter Q(z).

1
S+
Y (z) Q(z)

Yn Wn X̂n

Figure 2: Finding the best linear estimator of X using W with a two-stage filter
that first whitens the input.
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4.2.1 Non-Causal Case

Starting with noncausal case, we can apply the orthogonality principle,

E
[
(Xn − X̂n)W ∗

n−k

]
= 0 =⇒ E

[
XnW

∗
n−k
]

=
∑
m∈Z

q(m)E
[
Wn−mW

∗
n−k
]

∴ RXW (k) =
∑
m∈Z

q(m)RW (k −m) =⇒ SXW (z) = Q(z)SW (z)

∴ Q(z) =
SXW (z)

SW (z)
= SXW (z) = SXY (z)(S+

Y (z−∗))−∗ =
SXY (z)

S−Y (z)

When we cascade these filters,

H(z) = Q(z)G(z) =
SXY (z)

S−Y (z)

1

S+
Y (z)

=
SXY (z)

SY (z)
.

Definition 21 The best linear estimator of Xn using Yn where (Xn, Yn) is jointly WSS is
given by the non-causal Wiener filter.

H(z) =
SXY (z)

SY (z)

If we interpret definition 21 in the frequency domain, for a specific ω, we can
understand H(ejω) as an optimal linear estimator for FX(ω) where FX(ω) is the
the stochastic process given by the Cramer-Khinchin decomposition (theorem 7).
More specifically, we can use the Cramer-Khinchin decomposition of Yn.

X̂n =
∑
i∈Z

h[i]

∫ π

−π
ejω(n−i)dFY (ω)

=

∫ π

−π

(∑
i∈Z

h[i]e−jωi

)
ejωndFY (ω)

=

∫ π

−π
H(ejω)ejωndFY (ω)

Since FX and FY have jointly orthogonal increments, this tells us that H(ejω) is just
the optimal linear estimator of dFX(ω) using dFY (ω). dFX(ω) and dFY (ω) exist on
a Hilbert space, meaning we are essentially projecting each frequency component
of Xn onto the corresponding frequency component of Yn.
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4.2.2 Causal Case

First, note that in the causal case, whitening doesn’t break causality because 1
S+
Y (z)

is causal. When we apply the orthogonality principle,

E
[
(Xn − X̂n)W ∗

n−k

]
= 0 =⇒ E

[
XnW

∗
n−k
]

=
∞∑
m=0

q(m)E
[
Wn−mW

∗
n−k
]

∴ RXW (k) =
∞∑
m=0

q[m]RW (k −m) k ≥ 0

We can’t take the Z-transform of both sides because the equation is not necessarily
true for k < 0. Instead, we can look at the function

f(k) = RXW (k)−
∞∑
m=0

RW (k −m)q[m] =

{
0 k ≥ 0,

? else.

Taking the unilateral Z-transform of both sides,

[F (z)]+ = [SXW (z)− SW (z)Q(z)]+ = [SXW (z)]+ −Q(z) = 0

Q(z) = [SXW (z)]+ =

[
SXY (z)

S−Y (z)

]
+

Thus the filter H which gives the causal best linear estimator of X using Y is

H(z) = Q(z)G(z) =

[
SXY (z)

S−Y (z)

]
+

1

S+
Y (z)

.

Definition 22 The best linear estimator of Xn using {Yi}ni=−∞ is given by the causal
Wiener filter.

H(z) = Q(z)G(z) =

[
SXY (z)

S−Y (z)

]
+

1

S+
Y (z)

.

Intuitively, this should make sense because we are using the same W process as in
the non-causal case, but only the ones which we are allowed to use, hence use the
unilateral Z-transform of the non-causal Wiener filter, which amounts to truncated
the noncausal filter to make it causal.

Theorem 14 If X̂NC(n) is the non-causal Wiener filter of X , then the causal wiener filter
of X given Y is the same as the causal wiener filter of X̂NC given Y , and if Y is white
noise, then

X̂C(n) =
∞∑
i=0

h[i]Yn−i
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4.2.3 Vector Case

Suppose that instead of a Wide-Sense Stationary process, we an N length signalX
which we want to estimate with another N length signal Y . We can represent both
X and Y as vectors in CN . If we are allowed to use all entries of Y to estimate X ,
this is identical to linear estimation.

Definition 23 The non-causal Wiener filter of a finite length N signal Y is given by

Ks = RXYR
−1
Y .

Note that this requires RY � 0. Suppose that we wanted to design a causal filter
for the vector case, so X̂i only depends on {Yj}ij=1. By the orthogonality principle,

∀1 ≤ l ≤ i, E

[
Xi −

i∑
j=1

Kf,ijYjY
∗
l

]
= 0 =⇒ RXY (i, l) =

i∑
j=1

Kf,ijRY (j, l)

In matrix form, this means

RXY −KfRY = U+

where U+ is strictly upper triangular.

Theorem 15 If matrixH � 0, then there exists a unique lower-diagonal upper triangular
factorization of H = LDL∗ where L is lower diagonal and invertible with unit diagonal
entries and D is diagonal with positive entries.

Applying the LDL decomposition, we see that

RXY −KfLDL
∗ = U+ =⇒ RXY L

−∗D−1 −KfL = U+L−∗D−1

∴ [RXY L
−∗D−1]L −KfL = 0

where [·]L represent the lower triangular part of a matrix.

Definition 24 The causal Wiener filter of a finite length N signal Y is given by

Kf = [RXY L
−∗D−1]LL

−1

4.3 Hidden Markov Model State Estimation

Suppose we have a Hidden Markov Process {Yn}n≥1. We can think of determining
the state {Xn}n≥1 as filtering {Yn}n≥1.
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4.3.1 Causal Distribution Estimation

Suppose we want to know the distribution of Xt after we have observered Y t.

p(xt|yt) =
p(xt, y

t)

p(yt)
=

p(xt)p(yt, y
t−1|xt)∑

x p(yt, y
t−1|xt = x)p(xt = x)

=
p(xt)p(yt|xt)p(yt−1|xt)∑

x p(yt|xt = x)p(yt−1|xt = x)p(xt = x)
=

p(yt|xt)p(yt−1)p(xt|yt−1)∑
x p(yt|xt = x)p(yt−1)p(xt = x|yt−1)

=
p(yt|xt)p(xt|yt−1)∑

x p(yt|xt = x)p(xt = x|yt−1)

Now if we know p(xt|yt−1), then we are set.

p(xt|yt−1) =
∑
x

p(xt, xt−1 = x|yt−1) =
∑
x

p(xt−1 = x|yt−1)p(xt|xt−1 = x, yt−1)

=
∑
x

p(xt−1 = x|yt)p(xt|xt−1 = x)

Now we have a recursive algorithm for computing the distribution of xt.

Algorithm 1: Forward Recursion
β1(x1) = p(x1);
for t ≥ 1 do

αt(xt) = p(xt|yt) = βt(xt)p(yt|xt)∑
x βt(x)p(yt|xt=x)

(Measurement Update);
βt+1(xt+1) = p(xt+1|yt) =

∑
x αt(x)p(xt+1|xt = x) (Time Update);

end

4.3.2 Non-Causal Distribution Estimation

Suppose we are allowed to non-causally filter our signal and we care about the
distribution of Xt after we have observed Y n. In other words, for t ≥ n, we want
to find γt(xt) = p(xt|yn). When t = n, γn(xn) = αn(xn). If we continue expanding
backwards, then

p(xt|yn) =
∑
x

p(xt, xt+1 = x|yn) =
∑
x

p(xt+1 = x|yn)p(xt|xt+1 = x, yt, ynt+1)

=
∑
x

p(xt+1 = x|yn)p(xt|xt+1, y
t) =

∑
x

p(xt+1 = x|yn)
p(xt|yt)p(xt+1 = x|xt, yt)

p(xt+1 = x|yt)

=
∑
x

γt+1(x)
αt(xt)p(xt+1 = x|xt)

βt+1(x)
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This gives us a clear algorithm for non-causally computing the distribution of xt.

Algorithm 2: Backward Recursion
Run Forward Recursion;
γn(xn) = αn(xn);
for t = n− 1 to 1 do

γt(xt) =
∑

x γt+1(x)αt(xt)p(xt+1=x|xt)
βt+1(x)

;
end

4.3.3 State Sequence Estimation

Suppose we want to find the most likely sequence of states given our observations.
This means we should compute

X̂n = argmax
Xn

p(xn|yn)

p(xt, yt) = p(xt−1, yt−1)p(xt, yt|xt−1, yt−1)
= p(xt−1, yt−1)p(xt|xt−1, yt−1)p(yt|xt, xt−1, yt−1)
= p(xt−1, yt−1)p(xt|xt−1)p(yt|xt)

We see that there is a recursion in the joint distribution, so if we let Vt(xt) =
maxxt−1 p(xt, yt), then

Vt(xt) = max
xt−1

p(xt, yt) = p(yt|xt) max
xt−1

p(xt−1, yt−1)p(xt|xt−1)

= p(yt|xt) max
xt−1

[
p(xt|xt−1) max

xt−2
p(xt−1, yt−1)

]
= p(yt|xt) max

xt−1
p(xt|xt−1)Vt−1(xt−1)

The base case is that V1(x1) = p(x1)p(y1|x1). Vt is useful because x̂n = argmaxxn Vn(xn).
This is because we can first maximize over X̂n−1 and Y n, so the only thing left to
maximize is x̂n. Once we have x̂t, then we can comptue x̂t−1 by

x̂t−1 = argmax
xt−1

p(x̂t|xt−1)Vt−1(xt−1).
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Putting these equations gives us the Viterbi algorithm.

Algorithm 3: Viterbi Algorithm
V1(x1) = p(x1)p(y1|x1);
for t = 2 to n do

Vt(xt) = p(yt|xt) maxxt−1 p(xt|xt−1)Vt−1(xt−1);
end
x̂n = argmaxxn Vn(xn);
for t = n to 2 do

x̂t−1 = argmaxx p(x̂t|xt−1 = x)Vt−1(x);
end

4.4 Kalman Filtering

In the Kalman Filter setup, we assume that the signal we would like to filter can be
represented by a state-space model. We want to predict the state vectors X̂ i using
some linear combination of the observations Y i.

4.4.1 Kalman Prediction Filter

Suppose that we want to compute the one-step prediction. In other words, given
Y i, we want to predict X̂ i+1. Our observations Y are the only thing which give us
information about the state, so it would be nice if we could de-correlate all of the
Y . To do this, we can define the innovation process

ei = Y i − Ŷi|i−1 = Y i −HiX̂ i|i−1

The last equality follows from the state-space modela and that past observation
noises are uncorrelated with the current one. Now, to compute the one-step pre-
diction, we just need to project X̂ i onto the innovations.

X̂ i+1|i =
i∑

j=0

〈X i+1, ej〉R−1e,jej

= 〈X i+1, ei〉R−1e,iei +
i−1∑
j=0

〈X i+1, ej〉R−1e,jej

= 〈X i+1, ei〉R−1e,iei + X̂ i+1|i−1 = 〈X i+1, ei〉R−1e,iei + X̂ i+1|i

= 〈X i+1, ei〉R−1e,iei + FiX̂ i|i−1

The second to last equality follows from the Wide-Sense Markovity of state space
models, and the last equality is due to the state evolution noises being uncorre-
lated. If we let Kp,i = 〈X i+1, ei〉R−1e,i (called the prediction gain), then we have a
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recursive estimate of the optimal one-step predictor.

X̂ i+1|i = FiX̂ i|i−1 +Kp,iei.

Now, we just need to find a recursive formulation for Kp,i and Re,i. Starting with
Re,i, notice that we can write ei = Y i −HiX̂ i|i−1 = Hi(X i − X̂ i|i−1) + V i.

Re,i = 〈Hi(X i − X̂ i|i−1) + Vi, Hi(X i − X̂ i|i−1) + Vi〉
= Hi〈X i − X̂ i|i−1,X i − X̂ i|i−1〉H∗i +Ri

To find Kp,i, we should first find 〈X i+1, ei〉.
〈X i+1, ei〉 = Fi〈X i, ei〉+Gi〈U i, ei〉

= Fi〈X i, Hi(X i − X̂ i|i−1) + V i〉+ 〈U i, Hi(X i − X̂ i|i−1) + V i〉
= Fi〈X i,X i − X̂ i|i−1〉H∗i +GiSi

= Fi〈(X i − X̂ i|i−1) + X̂ i|i−1,X i − X̂ i|i−1〉H∗i +GiSi

= Fi〈X i − X̂ i|i−1,X i − X̂ i|i−1〉H∗i +GiSi

Notice that the matrix Pi = 〈X i− X̂ i|i−1,X i− X̂ i|i−1〉 is the auto-correlation of the
estimation error, and it shows up in both Kp,i and Rei . It would be useful to have
a recursive solution for this matrix as well.

Pi+1 = Πi+1 − 〈X̂ i+1|i, X̂ i+1|i〉
= FiΠiF

∗
i +GiQiG

∗
i − 〈FiX̂ i|i−1 +Kp,iei, FiX̂ i|i−1 +Kp,iei〉

= FiΠiF
∗
i +GiQiG

∗
i − Fi〈X̂ i|i−1, X̂ i|i−1〉F ∗ +Kp,iRe,iK

∗
p,i

= FiPiF
∗
i +GiQiG

∗
i −Kp,iRe,jK

∗
p,i

Putting this into a concrete algorithm, we get the Kalman Prediction Filter.

Algorithm 4: Kalman Prediction Filter
P0 = Π0;
X̂0|−1 = 0;
for i ≥ 0 do
ei = Y i −HiX̂ i|i−1;
Re,i = HiPiH

∗
i +Ri;

Kp,i = (FiPiH
∗
i +GiSi)R

−1
e,i ;

Pi+1 = FiPiF
∗
i +GiQiG

∗
i −Kp,iRe,iK

∗
p,i;

X̂ i+1|i = FiX̂ i|i−1 +Kp,iei;
end

4.4.2 Schmidt’s Modification of the Kalman Filter

The predictive Kalman filter goes directly from X̂ i|i−1 to X̂ i+1|i without ever deter-
mining X̂ i|i. The Schmidt Modification of the Kalman filter separates the predic-
tive kalman filter into two steps, allowing us to estimate the current state.
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1. Measurement Update: Find X̂ i|i given the latest observation Y i and X̂ i|i−1.

2. State Evolution (Time) Update: Find X̂ i+1|i using what we know about the
state evolution.

This mimics the approach of the forward algorithm for Hidden Markov Models,
which separated updates to the distribution using a time update and a measure-
ment update. Using our innovation process,

X̂ i|i =
i∑

j=0

〈X i, ej〉R−1e,jej

= X̂ i|i−1 + 〈X i, ej〉R−1e,ie
j

= X̂ i|i−1 + 〈(X i − X̂ i|i−1) + X̂ i|i−1, Hi(X i − X̂ i|i−1) + V i〉R−1e,ie
j

= X̂ i|i−1 + PiH
∗
i R
−1
e,iei

The gain on the coefficient of the innovation Kf,i = PiH
∗
i Re,i is called the Kalman

Filter Gain. The error of our estimator Pi|i = 〈X̂ i|i, X̂ i|i〉 is given by

Pi|i = Pi − PiH∗i R−1e,iHiPi.

For the time update,

X̂ i+1|i = FiX̂ i|i +GiÛ i|i

= FiX̂ i|i +Gi〈U i, ei〉R−1e,iei = FiX̂ i|i +Gi〈U i, ei〉R−1e,iei

= FiX̂ i|i +Gi〈U i, HX i + V i −HiX̂ i|i−1〉R−1e,iei

= FiX̂ i|i +GiSiR
−1
e,iei

We can re-write the error if this estimator Pi+1 as

Pi+1 = FiPi|iF
∗
i +Gi(Qi − SiR−1e,iS

∗
i )G

∗
i − FiKf,iS

∗
iG
∗
i −GiSiK

∗
f,iF

∗
i

Writing this as an algorithm,

Algorithm 5: Kalman Prediction Filter
P0 = Π0;
X̂0|−1 = 0;
for i ≥ 0 do
ei = Y i −HiX̂ i|i−1;
Re,i = HiPiH

∗
i +Ri;

Kf,i = PiH
∗
i R
−1
e,i ;

X̂ i|i = X̂ i|i−1 +Kf,iei;
Pi|i = Pi − PiH∗i R−1e,iHiPi;
X̂ i+1|i = FiX̂ i|i +GiSiR

−1
e,iei;

Pi+1 = FiPi|iF
∗
i +Gi(Qi − SiR−1e,iS

∗
i )G

∗
i − FiKf,iS

∗
iG
∗
i −GiSiK

∗
f,iF

∗
i ;

end
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4.4.3 Kalman Smoother

The Kalman Prediction Filter and Schmidt’s modification of the Kalman filter are
both causal filters. The Kalman Smoother provides a non-causal estimate in the
same way that the Backward Recursion algorithm does for Hidden Markov Pro-
cesses. In other words, the Kalman Smoother predicts X̂ i|n, the best linear estima-
tor of X̂ i from {Y 0, · · · ,Y N}. As before, we can start with the innovation process
ej = Y j −HjX̂j|j−1.

X̂ i|N =
N∑
j=0

〈X i, ej〉R−1e,jej = X̂ i|i−1 +
N∑
j=i

〈Xi, ej〉R−1e,jej.

We can compute X̂ i|i−1 using the Predictive Kalman filter, so we just need to com-
pute the 〈X i, ej〉R−1e,jej .

〈X i, ej〉 = 〈X i, Hj(X i − X̂j|j−1) + V j〉 = 〈X i, Hj(Xj − X̂j|j−1)〉
= 〈X̂ i|i−1 + (X i − X̂ i|i−1),Xj − X̂j|j−1〉H∗j

Xj − X̂j|j−1 is orthgonal to any linear function of {Y 0, · · · ,Y j−1}, so when j ≥ i,
it must be orthgonal to X̂ i|i−1 since it is a function of {Y k}i−10 . Thus, for j ≥ i,

〈X i, ej〉 = 〈X i − X̂ i|i−1,Xj − X̂j|j−1〉H∗j

If we denote Pij = 〈X i − X̂ i|i−1,Xj − X̂j|j−1〉, then

Pij = PiΦ
∗
p(j, i) = Pi

{
I if j = i∏j−1

k=i Fp,k if j > i

where Fp,k = (Fk −Kp,kHk). This gives us the expression

X̂ i|N = X̂ i|i−1 + Pi

N∑
j=i

Φ∗p(j, i)H
∗
i R
−1
e,jej.

If we let λi|N =
∑N

j=i Φ
∗
p(j, i)H

∗
i R
−1
e,jej , then we get the recursion

λi|N = F ∗p,iλi+1|N +H∗i R
−1
e,i ei.

If we want to look at the error of this estimator, we see that

Pi|N = Pi − PiΛi|NPi where Λi|N = 〈λi|N , λi|N〉 = F ∗p,iΛi+1|NFp,i +H∗i R
−1
e,iHi.
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Writing all of this as an algorithm,

Algorithm 6: Kalman Smoother Filter
Run Kalman Prediction Filter;
λN+1|N = 0;
ΛN+1|N = 0;
for i = N to 0 do

λi|N = F ∗p,iλi+1|N +H∗i R
−1
e,i ei;

X̂ i|N = X̂ i|i−1 + Piλi|N ;
Λi = F ∗p,iΛi+1|NFp,i +H∗i R

−1
e,iHi;

Pi|N = Pi − PiΛi|NPi;
end
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