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Abbreviations

The following notation will be employed throughout this text:
N : Set of all positive integers
Z : Set of all integers
Q : Set of all rational numbers
R : Set of all real numbers, i.e. the real line
C : Set of all complex numbers
C− : Set of all complex numbers with a (strictly) negative real part
C− : Set of all complex numbers with a non-positive real part
C0 : Set of all purely imaginary numbers
C+ : Set of all complex numbers with a (strictly) positive real part
C+ : Set of all complex numbers with a non-negative real part
∈: Is an element of (Is contained in)
∀: For each (for all)
∃: There exists
∃!: There exists a unique
∃?: Does there exist
3: Such that
A⇒ B: A implies B
B ⇐ A: B implies A
A⇔ B: A and B are equivalent
In: Identity matrix of dimension n× n
On: Zero matrix of dimension n× n
◦: Composition of Functions
1X : Identity map from X to X
S1 ⊂ S2: The set S1 is a subset of the set S2

W ≤ V : The vector space W is a subspace of the vector space V
W ⊕ V : The direct sum of W and V .

W
⊥
⊕ V : The orthogonal direct sum of W and V .

| · |: Norm of a vector
‖ · ‖: Norm of a matrix or operator
X(s): Unilateral Laplace transform of x(t)

(If the time-domain argument is capitalized, e.g. X(t), a hat is used, e.g. X̂(s)).
ust(t): Unit step function
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LTI: Linear time-invariant
LTV: Linear time-variant
SISO: Single-input-single-output
MIMO: Multiple-input-multiple-output
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Chapter 1

Linear Systems and Math Preliminaries

1.1 Linear Systems

We begin by presenting a brief history of control theory, as summarized in this chart:

Age Tools Examples
Pre-industrial Era Art vs. Science Water clocks
(∼ 1600)
Industrial Era ODEs, PDEs, Stability Theory Steam regulators,
(1600-1900) Routh Criteria, Lyapunov Theory Windmills
Classical Control λ Root locus, Bode plot, Telephones, Amplifiers
(1900-1950) Nyquist plot Bomb deployment
Modern Era State-space methods Navigation
(1950 ∼)

The main purposes of controllers are to (1) stabilize a system, and (2) improve system
performance. There are many types of controllers; we list a few below in increasing order of
sophistication and performance:

1. Undergraduate—PID

2. Graduate—LQR, Extremum-stacking, state/output feedback, Loop-shaping, MPC

3. Nonlinear—Sliding-mode, Feedback linearization.

A brief review of key definitions and concepts in linear systems is given below.

Definition 1.1 (State). x(t) ∈ Rn is a state for the system Σ if the initial state x(t0), and
input sequence u[t0,t] are sufficient to uniquely determine the output sequence y[t0,t], for each
t ≥ t0.

Definition 1.2 (Linear vs. Nonlinear systems).

7
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1. A non-linear system, without loss of generality, has the form:

Σn,l :

{
ẋ = f(x, u),

y = h(x, u)

where f, h are not necessarily linear in the tuple (x, u).

2. A linear system has the form:

Σn,l :

{
ẋ = Ax+Bu,

y = Cx+Du,

where A,B,C,D are time-independent matrices of appropriate dimensions.

Definition 1.3. An equilibrium point (xeq, ueq) of a system is a point satisfying:

ẋ
∣∣∣
(xeq ,ueq)

= F (xeq, ueq) = 0

Definition 1.4 (Linearization). A nonlinear system Σnl : ẋ = f(x, u) can be linearized about
its equilibrium point (assumed to be (xeq, ueq) = (0, 0) via Taylor expansion on (x, u) about
(xeq, ueq):

ẋ = F (x, u)

= F (xeq, ueq) +
∂F

∂x
(xeq, ueq)︸ ︷︷ ︸
≡A

·(x− xeq) +
∂F

∂u
(xeq, ueq)︸ ︷︷ ︸
≡B

·(u− ueq) + h.o.t.

≈ Ax+Bu,

where F (xeq, ueq) = 0 by definition of the equilibrium point (xeq, ueq) = (0, 0), and h.o.t. stands
for ”higher-order terms.”

January 24, 2019

Next, we will review controllability, stability, stabilizability, and feedback control. First,
let us examine the equilibrium point of a simple linear time-invariant (LTI) system. This will
motivate subsequent discussions.

Example. The set of all equilibrium points of the LTI system Σ : ẋ = Ax is N(A), the null
space of A, i.e. x is an equilibrium point of Σ if and only if x ∈ N(A). This is because:

x is an equilibrium point

⇒ ẋ = Ax = 0

⇒x ∈ N(A)
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We now turn to the concept of controllability. Consider first the following definitions
and results.

Definition 1.5 (Piecewise Continuity). The function f(x, t) : Rn × R+ → Rn is said to be
piecewise continuous in t if, in any closed and bounded interval:

1. f(x, ·) : R+ → Rn is continuous except at a finite number of points.

2. All discontinuities of f in the interval are simple (jump) discontinuities, i.e. the left and
right limits exist and differ by a finite amount.

Note (Notation). Let x(t, t0, x0, u[t,t0]) denote the trajectory (solution) of a system Σ at time
t, given x(t0) = x0, and control input u[t0,t], as defined on the time interval [t0, t].

Theorem 1.6 (Solution to LTI systems). The trajectory of the LTI system Σ : ẋ = Ax+Bu
is given by:

x(t, t0, x0, u[t0,t]) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ

Definition 1.7 (Steering). Let (U,Σ,Y , s, r) be a dynamical system representation, and let
t0, t1 be given with t0 < t1. The input u[t0,t1](·) steers (x0, t0) to (x1, t1) if:

x1 = x(t1, t0, x0, u[t0,t1])

The notion of controllability is concerned with the following question—Given a linear
time-invariant (LTI) system Σ : ẋ = Ax + Bu with initial state x0, initial time t0, final state
xf ∈ Rn, and final time T ∈ R (with t < T ), does there exist any piecewise continuous control
input u[t0,T ] that steers (x0, t0) to (xf , T )?

If the answer to the above question is in the affirmative for any x0, xf ∈ Rn, t, T ∈ R,
t < T , the system Σ : ẋ = Ax+Bu is said to be completely controllable on [t, T ].

If there exists a u piecewise continuous such that x(T, t0, x0, u) = xf , ∀x0, xf , t0, T > t0,
then the system is (completely) controllable.

Definition 1.8 (Complete Controllability on [t0, t1]). The system representation D is
(completely) controllable on [t0, t1] if, for each x0, x1 ∈ Σ, there exists some u[t0,t1] ∈ U
that steers x0 at t0 to x1 at t1.

Definition 1.9 (Reachable Set). Given a system Σ, the reachable set of Σ from (x0, t0) at
time T > t0 is defined by:

R(T, t0, x0) = {x̃ ∈ Rn|∃ piecewise continuous u[t0,T ] 3 x(T, t0, x0, u) = x̃}.

Proposition 1.10. R(T, t0, 0) is a subspace of Rn.
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Proof. It suffices to show that R(T, t0, 0) is invariant under linear combination. Let x1f , x
2
f ∈

R(T, t0, 0). Then there exist inputs u1[t0,T ], u
2
[t0,T ]

that steer the system from (x0, t0) to (x1f , T )

and to (x2f , T ), respectively. In other words, for k = 1, 2, we have:

xkf = eA(t−t0) 0 +

∫ T

t0

eA(t−τ)Buk(τ)dτ.

Thus, we have:

xkf = eA(t−t0) 0 +

∫ T

t0

eA(t−τ)Bui(τ)dτ

=

∫ T

t0

eA(t−τ)Buk(τ)dτ.

We need to show that α1x
1
f +α2x

2
f ∈ R(T, t0, 0). Plugging in, this is true because integration is

linear, and a linear combination of piecewise continuous functions is still piecewise continuous:

α1x
1
f + α2x

2
f =

∫ T

t0

eA(t−τ)B
(
α1u1(τ) + α2u2(τ)

)
dτ.

�

Remark. This is a powerful result, since it considerably reduces the number of possibilities for
what R can be. For instance, if n = 3, then R(T, t0, 0) is a subspace of R3, so R(T, t0, 0) is
some rotation of a plane, some rotation fo a line, {0}, or R3.

Example. If x0 ∈ R(T, t0, 0), it is not necessarily true that R(T, t0, x0) = R(T, t0, 0). For
instance, if B = 0, the system is completely unaffected by any choice of input, in which case:

R(T, t0, 0) = {0}
R(T, t0, x0) = {eA(T−t0)x0},

and R(T, t0, 0) and R(T, t0, x0) turn out to be distinct for any x0 6= 0. However, this statement
is true if the system is completely controllable, in which case:

R(T, t0, x0) = Rn,

for any x0 ∈ Rn, including 0.

Lemma 1.11. R(T, t0, x0) = eA(T−t0)x0 + R(T, t0, 0). Note that R(T, t0, x0) is not a subspace
in general, since it need not include the origin.

Proof. Follows from linearity. �

Theorem 1.12. Consider the LTI system Σ : ẋ = Ax + Bu with x ∈ Rn, u ∈ Rni, and fix
arbitrary x0 and t0. Then the following are equivalent:
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1. Σ is completely controllable.

2. R(T, t0, x0) = Rn for all T > t0.

3. R(T, t0, x0) = Rn for some T > t0.

4. R
( [
B AB · · · An−1B

] )
= Rn.

5. rank
( [
B AB · · · An−1B

] )
= n.

Proof. We will verify various parts of the above proof for the single-input case, i.e. for the case
ẋ = Ax+Bu, u ∈ R.

Observe that (3) naturally follows from (2), while (4) and (5) are equivalent by definition
of range space and rank. What remains of the theorem follows from the following claim:

Claim : R(T, t0, 0) = span{b, Ab, . . . , An−1b}.

The claim holds because

xf = x(T ) =

∫ T

t0

eA(T−τ)bu(τ)dτ

=

∫ T

t0

∞∑
i=0

αi(T − τ)Aibu(τ)dτ (Taylor Series Expansion)

=
∞∑
i=0

Aib

(∫ T

t0

αi(T − τ)u(τ)dτ

)
︸ ︷︷ ︸

≡βi(T )

=
∞∑
i=0

βi(T )Aib

=
n−1∑
i=0

γi(T )Aib (Cayley-Hamilton Theorem)

∈ span{b, Ab, . . . , An−1b}

One can also show the other direction (omitted in class). �

Lemma 1.13 (PBH Test for Controllability). Σ : ẋ = Ax+Bu is completely controllable
if and only if:

rank
( [
λI − A B

] )
= n

for each λ ∈ R.

Example. Let ẋ = Ax+Bu, with:

A =

−1 0 1
−2 −1 0
0 0 3

 , B =

1
0
0


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1. Is the system controllable? Answer: no.

2. Compute R(T, t0, 0).

3. Given x0 =
[
0 0 0

]T
, xf =

[
1 1 0

]T
, does there exist a piecewise continuous control

u[t0,T ] such that x(T ) = xf?

4. Given x0 =
[
0 0 0

]T
, xf =

[
1 1 1

]T
, does there exist a piecewise continuous control

u[t0,T ] such that x(T ) = xf?

5. Given x0 =
[
1 0 0

]T
, xf =

[
1 1 1

]T
, does there exist a piecewise continuous control

u[t0,T ] such that x(T ) = xf?

Solution :

1. No, since, by the PBH test, rank
( [
−3I − A B

] )
= 2 < 3.

2. Observe that:

R(T, t0, 0) = R
( [
b Ab A2b

] )
= span


1

0
0

 ,
0

1
0




3. Yes, since xf ∈ R(T, t0, 0).

4. No, since xf 6∈ R(T, t0, 0).

5. We must check whether or not xf − eA(T−t0) ∈ R(T, t0, 0) (Not done in class yet).

January 29, 2019

To begin with, consider the table below, which summarizes conditions for different no-
tions of stability as they apply to linear systems. We indicate necessary conditions with (n.)
and sufficient conditions with (s.); all remaining, unmarked conditions are necessary and suf-
ficient.

.
Sometimes, it is desirable to have undesirable systems, to improve response time (e.g.

for fighter jets). However, such systems should be controllable; this inspires the need for the
concept of stabilizability.

Recall that an LTI system is stabilizable, by definition, if each of its poles in the closed
right complex plane (C+) can be relocated to the left half complex plane (C−) via state feedback,
i.e. if each of its unstable modes is controllable. Equivalently, an LTI system is stabilizable
if and only if each of its uncontrollable modes is already stable. Mathematically, if the LTI
system Σ : ẋ = Ax+Bu, where x ∈ Rn, u ∈ Rni , is stable, then there exists some state feedback
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Property Eigenvalue test Intuition

1. Stable in the sense Re{λi} ≤ 0,∀i (n.) Solution stays in
of Lyapunov neighborhood of xeq

2. Asymptotic stability Re{λi} < 0,∀i x(t, x0)→ xeq as t→∞
3. Exponential stability Same as Same as

asymptotic stability asymptotic stability
4. Unstable ∃i,Re{λi} > 0 (s.) x(t, x0)→∞ for some x0

sufficiently close to xeq

Table 1.1: Stability for linear systems.

gain such that, if the state feedback u = −Kx is applied to the system, the resulting closed
loop system:

ΣSF : ẋ = Ax+Bu

has poles that all lie in C−, i.e. σ(A−BK) ∈ C−.
In general, if the system is controllable, there exist two common methods for selecting

the state feedback gain K:

1. Pole Placement: Fix a choice of closed-loop poles {p1, · · · , pn}, and design the state
feedback gain matrix K to place the closed-loop poles there, i.e.:

σ(A−BK) = {p1, · · · , pn}.

2. Linear Quadratic Regulator: Fix performance parameters Q,R, where Q is positive
semidefinite (Q ≥ 0) and R is positive definite (R > 0), and design the state feedback
K(T ) such that the cost:

J
(
u[0,T ]

)
=

∫ T

0

xTQx+ uTRudu

is minimized, subject to the dynamics constraints:

ẋ = Ax+Bu, u = −K(t) · x

When T →∞, the state feedback K(t) becomes time-invariant.

Next, we wish to examine differences between linear and non-linear systems. First, we
wish to ask ourselves why non-linear systems are worthy of our attention, when they may
sometimes simply be linearized and controlled using linear system theory. The following list
addresses the necessity of studying on-linear systems:

1. Linear control works only locally, if at all, on most non-linear systems.

2. Nonlinear control may allow the system to be stabilized with greater efficiency, speed,
and/or accuracy.
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3. Nonlinear systems may have properties or exhibit behaviors not easily described using
linear system theory (e.g. multiple isolated equilibria, bifurcations, limit cycles).

4. Nonlinear systems can yield more interpretable results.

The following table provides a brief summary of the main differences between linear and
nonlinear systems.

Property LTI system Nonlinear system
(ẋ = Ax+Bu) (ẋ = f(x, u))

Equilibria 1. Equilibria are singletons (0) 1. No general form
or connected (N(A))

2. Re{λi} < 0⇒ Global stability 2. May have the following:
3. Very fragile with respect to (a) Bounded regions of attraction

elements of A (b) Limit cycles
(Isolated periodic order)

(c) Multiple isolated equilibria
4. System stability is independent of 4. System stability may depend on

the choice of input u the choice of input u

Solutions 1. Solution (analytic) uniquely 1. Solution:
exists for each t ≥ 0: (a) May not always exist

(x(t) = eAtx0) (b) May exist non-uniquely
(e.g. Bifurcations)

(c) May exist uniquely, but only in
some finite time range
(e.g. Finite escape time)

2. Linear dependence on 2. Extreme Sensitivity to
initial conditions (x0, t0) initial conditions (x0, t0)

Table 1.2: Properties of linear and nonlinear systems.

Below, we provide examples that illustrate each of the eccentricities of nonlinear systems
listed above.

Example (Finite Escape Time). Consider the nonlinear system given by:

Σ : ẋ = −x+ x2, x(0) = x0.

The solution to the system is given by:

x(t) =
x0e
−t

1− x0(1− e−t)
If x0 < 1, the above solution is valid for each time t. If x0 = 1, the original differential equation
gives the solution x(t) = 1. If x0 > 1, then the solution of the above system holds only in the

range
(

0, ln
(

x0
x0−1

))
; after that point, the solution diverges to infinity.



1.1. LINEAR SYSTEMS 15

Example (Stable, Unstable, and Semi-Stable Equilibria). Consider the three following
systems, each expressed in polar coordinates (with r ∈ [0,∞), π ∈ [0, 2π)) with arbitrary initial
conditions:

Σ1 : ṙ = −r(r2 − 1), θ̇ = 1,

Σ2 : ṙ = r(r2 − 1), θ̇ = 1,

Σ3 : ṙ = r(r2 − 1)2, θ̇ = 1.

Observe that Σ1,Σ2,Σ3 each have equlibria at r = 0, 1. In particular, regarding the equilibrium
point r = 1:

1. r = 1 is a stable equilibrium point for Σ1, since ṙ > 1 when r < 0, and ṙ < 0 when r > 1.

2. r = 1 is an unstable equilibrium point for Σ2, since ṙ < 0 when r < 1, and ṙ > 0 when
r > 1.

3. r = 1 is an semi-stable equilibrium point for Σ3, since ṙ > 0 for each r.

Example (System Stability may depend on input). Consider the system:

Σ : ẋ = xu,

with ‖u‖2 ≤ 1. If u ∈ [−1, 0], the system is stable; if u ∈ [−1, 0], the system is unstable.

Example (Existence and Uniqueness of Solutions). Consider the systems:

Σ1 : ẋ = −sgn(x), x(0) = 0.

Σ2 : ẋ = −3x2/3, x(0) = 0,

Σ3 : ẋ = −x+ x2, x(0) = 0.

We have the following analysis:

• Σ1 has no solution in C1.

• Σ2 has the following two solutions:

x1(t) = t3,

x2(t) = 0

• Σ3 has the following unique solution:

x(t) =
x0e
−t

1− x0(1− e−t)
,

which holds only in the time frame
(

0, ln
(

x0
x0−1

))
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Below, we examine the phenomenon of bifurcations. Systems of physical interest often
have parameters which appear in the defining systems of equations:

ẋ1 = f1,µ(x1, x2),

ẋ2 = f2,µ(x1, x2)

When a non-linear system ẋ = f(x, u, t) has a singular Jacobian at the point of linearization,
several branches of equilibria can come together. As these parameters µ are varied, changes
occur in the qualitative structure of the solutions, denoted as x?(µ). We have the following
result, derived from the Implicit Function Theorem:

Theorem 1.14 (Implicit Function Theorem). Consider a parameterized non-linear system
ẋ = fµ(x, t). If the Jacobian linearization about x?(µ), denoted by:

Dxfµ(x?(µ)) ≡ ∂fµ
∂x

(
x?(µ)

)
,

does not have a zero eigenvalue, the solution x?(µ) is a smooth function of µ.

However, when Dxfµ
∣∣
x?(µ)

has a zero eigenvalue, several branches of equilibria may come

together. When this occurs, x?(µ) is called a bifurcation point.

Example (Bifurcation Point). Consider the scalar system given by:

ẋ = µx− x3,

where µ ∈ R. If µ ≤ 0, the system has only one equilibrium, xeq = 0. However, when µ > 0,
there are three possible equilibria—xeq = 0,±√µ. This is illustrated by the figure below.

Figure 1.1: Pitchfork bifurcation
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1.2 Mathematical Preliminaries:

January 31, 2019

Next, we will review some basic definitions and concepts from real analysis. The moti-
vation for these concepts is as follows— Consider the nonlinear system:

Σ : ẋ = f(t, x, u), x(0) = x0, t ≥ 0

. We wish to examine the following properties of the system:

• (Existence). When does Σ have at least one solution?

• (Uniqueness). When does Σ have exactly one solution?

• When does Σ have one solution defined on t ∈ [0,∞)?

• When does Σ have one solution defined on t ∈ [0,∞) that depends continuously on x0.

Definition 1.15 (Extended Real Line). Define the extended real line Re (or R) as the
union of R and {±∞}, i.e.:

R̄ = Re = R ∪ {±∞}

Definition 1.16 (Supremum). Let S ⊂ R. An element a? ∈ Re is called the supremum, or
least upper bound, of S if:

• s ≤ a?,∀s ∈ S

• If b ∈ Re satisfying s ≤ b,∀s ∈ S, then a? ≤ b.

Definition 1.17 (Infimum (Greatest Upper Bound)). . Let S ⊂ R. An element a? ∈ Re

is called the infimum, or greatest lower bound, of S if:

• s ≥ a?,∀s ∈ S

• If c ∈ Re satisfying s ≥ c,∀s ∈ S, then a? ≥ c.

Proposition 1.18. The following is always true of any subset S of R.

1. The supremum of S always uniquely exists.

2. If the maximum of S exists, it must be equal to its supremum.

3. The infimum of S always uniquely exists.

4. If the minimum of S exists, it must be equal to its infimum.

Example. A few examples of suprema are as follows:
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• S = (0, 1). supS = 1, but maxS does not exist.

• S = (0, 1]. supS = 1 = maxS.

• S = {x ≥ 0 | x ∈ R}. supS =∞.

Definition 1.19 (Supremum of a Function). Suppose S ⊂ R, F : S → R, then

sup
x∈S

f(x) := sup{f(x) | x ∈ S}

Definition 1.20 (Norms). Let V be a vector space over the reals R. Then ‖ · ‖ : V → R is a
norm over V if:

• ∀x, ‖x‖ ≥ 0 and ‖x‖ = 0 ⇐⇒ x = 0

• ∀x, α ∈ R, ‖αx‖ = |α| · ‖x‖

• ∀x, y, ‖x+ y‖ ≤ ‖x‖+ ‖y‖

Definition 1.21 (Normed Space). (V, ‖ · ‖) is called a normed space if V is a vector space
over R and ‖ · ‖ : V → R is a norm.

Example. Let x ∈ Rn, then:

• ‖x‖2 =
√∑n

i=1 |xi|2 =
√
xTx

• ‖x‖1 =
∑n

i=1 |xi|

• ‖x‖∞ = maxi |xi|

Now let V = {f : [a, b]→ R | f is continuous} = C[a, b]

• ‖f‖∞ = maxa≤x≤b |f(x)|

Definition 1.22 (Induced norms). Let A : V → V be a linear operator and (V, | · |) be a
normed space. The induced norm of A is:

|A|i := sup
x 6=0

|Ax|
|x|

= sup
|x|=1

‖Ax‖

Proposition 1.23. ‖Ax‖ ≤ ‖A‖i‖x‖,∀x ∈ V

Example. (V, ‖ · ‖) = (Rn, ‖ · ‖2, then ‖A‖i =
√
λmax(ATA).

Proof. ‖Ax‖ =
√

(Ax)TAx =
√
xTATAx . . . �

Definition 1.24 (Equivalence of norms). Two norms ‖ · ‖a, ‖ · ‖b on V are equivalent if
∃k1, k2 > 0 such that, for each x ∈ V :

k1‖x‖a ≤ ‖x‖b ≤ k2‖x‖a .
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Theorem 1.25. A vector space V is finite dimensional if and only if all norms on V are
equivalent.

Definition 1.26. Open sets and open balls. Let x0 ∈ V, (V, ‖ · ‖) be a normed space, and let
a > 0.

1. The open ball of radius a centered at x0 is defined as:

Ba(x0) := {x ∈ V | ‖x− x0‖ < a}

2. A set S ⊂ V is open if ∀s0 ∈ S,∃ε > 0, s.t. Bε(x0) ⊂ S.

Example. A few examples of open balls include the following:

• (R2, ‖ · ‖2), B1(0) is the open unit disc.

• (R2, ‖ · ‖1), B1(0) is a diamond.

• (R2, ‖ · ‖∞), B1(0) is a square.

Remark. By convention, the empty set ∅ is open.

Example. A few examples of open sets.

• S = (0, 1) ⊂ (R, | · |) is open

• S = [0, 1) ⊂ (R, | · |) is not open (s0 = 0 is a counterexample). In fact it is not closed
either.

Definition 1.27 (Closed Set). A set S is closed if its complement Sc is open.

Proposition 1.28. The following facts hold for arbitrary open and closed sets:

1. The union of a collection of open sets is open.

2. The union of a finite collection of closed sets is closed.

3. The intersection of a collection of closed sets is closed.

4. The intersection of a finite collection of open sets is open.

Definition 1.29 (Convergence of a Sequence). Let (xk, k ≥ 1) denote a sequence of vectors
in some normed space (V, | · |). We say that (xk, k ≥ 1) converges to a point x if, for each
ε > 0, there exists some N(ε) ∈ N, such that:

‖xk − x‖ < ε,

for each n ≥ N(ε).
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Note (Notation). If (an, n ≥ 1) is a sequence that converges to a, we write:

1. limn→∞ an = a, or

2. (an)→ a as n→∞.

Example. Consider the following sequences in (R, | · |):

• If (xn) = 1/n, then limn→∞ xn = 0.

• If (xn) = (1 + 1/n)n, then limn→∞ xn = e.

Next, we will discuss complete spaces and contraction mappings.

Definition 1.30 (Cauchy Sequence). A sequence (xn) is Cauchy if, for each ε > 0, there
exists some N > 0 such that

|xn − xm| < ε

for each n,m ≥ N .

Theorem 1.31. If (xn, n ≥ 1) is a convergent sequence in X, then (xn) is a Cauchy sequence.

Proof. Let ε > 0, and suppose xn → x̄ for some x̄ ∈ X. Then there exists some N ∈ N such
that for each n ≥ N :,

|xn − x̄| <
1

2
ε.

Now, fix m,n ≥ N . Then:

|xn − xm| = |xn − x̄+ x̄− xm|
≤ |xn − x̄|+ |xm − x̄| < ε

Thus, by definition, (xn) is a Cauchy sequence. �

Definition 1.32 (Complete Space). A vector space (V, | · |) is complete if every Cauchy
sequence in V converges to a point in V .

We state the following facts without proof.

Theorem 1.33.

1. Every finite dimensional vector space is complete.

2. (C[a, b], | · |∞) is complete.

Definition 1.34 (Banach Space). A complete normed space is called a Banach space.
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Definition 1.35 (Continuous Function). Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be normed spaces.

1. A function f : V → W a continuous at x0 ∈ V if, for each ε > 0, there exists some
δ > 0 such that whenever ‖x− x0‖V < δ, we have:

‖f(x)− f(x0)‖W < ε.

2. A function f : V → W is continuous on V if it is continuous at all points x0 ∈ V .

Below, we will introduce the contraction mapping theorem. First, consider the following
conditions

Definition 1.36 (Lipschitz Continuity, Contraction). Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be
normed vector spaces.

1. The function f : X → Y is said to be (locally) Lipschitz continuous at x0 ∈ X with
Lipschitz constant κ, if there exists some κ > 0, r > 0 such that:

‖f(x)− f(y)‖Y ≤ κ · ‖x− y‖X

whenever x, y ∈ Br(x0). This inequality is called the Lipschitz condition, and κ > 0 is
called the Lipschitz constant.

2. The function f : X → Y is said to be globally Lipschitz continuous at x0 ∈ X with
Lipschitz constant κ, if there exists some κ > 0 such that:

‖f(x)− f(y)‖Y ≤ κ · ‖x− y‖X

for each x, y ∈ X.

3. The function f is called a contraction if it is Lipschitz continuous with Lipschitz constant
c ∈ [0, 1), i.e. if there exists some c ∈ [0, 1) such that, for each x, y ∈ X:

‖f(x)− f(y)‖Y ≤ c · ‖x− y‖X

.

Definition 1.37 (Fixed Point). Let (X, ‖ · ‖X) be a normed vector space, and let f : X → X
be given. We say that x∗ ∈ X is a fixed point of f if f(x∗) = x∗.

Theorem 1.38 (Contraction Mapping Theorem). Let (X, | · |) be a Banach space, and let
f : X → X be a contraction with Lipschitz constant c. Then the following statements hold:

1. f has a unique fixed point, i.e. there exists a unique x∗ ∈ X such that f(x∗) = x∗.

2. Fix x0 ∈ X, and define xn = f(xn−1), for each n ∈ N. Then (xn) is Cauchy, and
converges to x∗.

3. The rate of convergence of (xn) to x? decreases at least as fast as O(cn).
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Example. (R2, | · |2) and seek to solve Ax = b. Let P (x) = x+ (Ax− b).

|P (x)− P (y)|2 = |x+ Ax− b− y − Ay + b|2
= |(A+ I)(x− y)|2
≤ ‖A+ I‖i · |x− y|2

so P is a contraction if ‖A+ I‖i = σmax(A+ I) < 1.
Note that:

P (x∗) = x∗ ⇐⇒ x∗ = x∗ + (Ax∗ − b)
⇐⇒ Ax∗ = b

We state the following theorem without proof, although the proof is not difficult.

Theorem 1.39. Let f : Rn → Rm be given.

1. If f is Lipshitz continuous at some x0 ∈ Rn, then it is continuous at x0.

2. If f is differentiable, and there exists x0 ∈ X, r > 0, L <∞ such that:∥∥∥∥∂h∂x(x)

∥∥∥∥ < L

for each x ∈ Br(x0), then f is locally Lipschitz at x0.

Example. The saturation function h(x), given by:

h(x) =


−1, x < 1,

|x|, x ∈ [−1, 1],

1, x > 1.

is Lipschitz continuous with Lipschitz constant L = 1 (in fact, one can take any L ≥ 1 to be
the Lipschitz constant for h).

February 7, 2019

Definition 1.40 (Solution to an ODE). Given an ODE:

ẋ = f(x, t), x(t0) = x0, (1.1)

where t ≥ t0, x0 ∈ Rn, we say that φ(t) is a solution of Σ on [t0, t1] if the following conditions
hold:

1. φ(t) is differentiable on [t0, t1],

2. φ(t) satisfies φ̇(t) = f
(
φ(t), t

)
, ∀ t ∈ [t0, t1].



1.2. MATHEMATICAL PRELIMINARIES: 23

3. φ(t0) = x0,

or, more generally, if the following conditions hold:

1. φ(t) is integrable on [a, b],

2. φ(t) satisfies:

φ(t) = x0 +

∫ t

t0

f
(
τ, f(τ)

)
dτ

for each t ∈ [a, b].

Theorem 1.41 (Local Existence and Uniqueness of Solutions of an ODE). Consider
the differential equation:

ẋ = f(x, t), x(t0) = x0

where f(x, t) : Rn ×R+ → Rn is piecewise continuous in t and Lipschitz continuous at each x,
i.e. there exists some T > t0, r > 0, L > 0 such that:

‖f(t, x)− f(t, y)‖ ≤ L · ‖x(t)− y(t)‖

for each x, y ∈ Br(x0) and t ∈ [t0, T ]. Then there exists a unique function of time φ(·) :
[t0, t0 + δ]→ Rn that is continuously differentiable almost everywhere, and is the solution to the
given ODE, i.e. it satisfies:

φ(t0) = x0

φ̇(t, 0) = f(φ(t), t),

for each t ∈ [t0, t0 + δ]\D, where D is the set of discontinuity points of f as a function of t.

Proof. (Sketch) We wish to apply the Contraction Mapping Theorem. Consider the family of
continuous functions Cn[t0, t0 + δ], as defined below:

Cn[t0, t0 + δ] = {φ(·) : [t0, t0 + δ] ∈ Rn|φ is continuous},

for any δ > 0. For each φ(·) ∈ Cn[t0, t0 + δ], define the infinity norm of φ as:

‖φ(·)‖∞ ≡ sup
t∈[t0,t0+δ]

‖φ(t)‖.

We are now ready to define our contraction. Consider P : Cn[t0, t0 + δ]→ Cn[t0, t0 + δ],
defined by:

(P ◦ φ)(t) = x0 +

∫ t

t0

f
(
τ, φ(τ)

)
dτ, ∀ t ∈ [t0, t0 + δ]
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for each φ(·) ∈ Cn[t0, t0 + δ]. Thus, for any x(·), y(·) ∈ Cn[t0, t0 + δ], we have:

‖(P ◦ x)(t)− (P ◦ y)(t)‖∞ = sup
t∈[0,δ]

∥∥∥∥∫ t

t0

f
(
x(τ), τ

)
− f

(
y(τ), τ

)
dτ

∥∥∥∥
≤ sup

t∈[0,δ]

∫ t

t0

∥∥f(x(τ), τ
)
− f

(
y(τ), τ

)∥∥ dτ ≤ sup
t∈[0,δ]

L ·
∫ t

t0

‖x(τ)− y(τ)‖dτ

≤ sup
t∈[0,δ]

L ·
∫ t

t0

‖(x− y)(·)‖∞ dτ = sup
t∈[0,δ]

L · ‖x− y‖∞ · (t− t0)

≤ Lδ · ‖x− y‖∞

Take δ < 1/L. Then P is a contraction, so it has a unique fixed point, at which:

x?(t) = x0 +

∫ t

t0

f
(
τ, x?(τ)

)
dτ

⇔ ẋ?(t) = f
(
x?(t), t

)
.

�
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Below, we present a different version of Theorem 1.41.

Corollary 1.42. Consider the differential equation (1.1) (reproduced below):

ẋ = f(x, t), x(t0) = x0,

where f(t, x) is piecewise continuous in t, and there exists some T > t0, r > 0, L > 0 such
that: ∥∥∥∥∂f∂x (t, x)

∥∥∥∥ ≤ L,

for each x ∈ Br(x0) and t ∈ [t0, T ]. Then there exists some δ > 0 such that a unique solution
to (1.1) exists on [t0, t0 + δ].

Remark. Notice that the conclusion of this corollary is identical to that of the above theorem;
however, here the assumptions on f are stronger. Whereas previously, we only required f to
be locally Lipschitz continuous in x about x0 and piecewise continuous in t, here we require the
existence and boundedness of partial derivatives of f in some neighborhood centered at x0.

Below, we present a global version of Theorem 1.41.

Theorem 1.43 (Global Existence and Uniqueness of Solutions of an ODE). Consider
the differential equation (1.1) (reproduced below):

ẋ = f(x, t), x(t0) = x0,
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If f(t, x) is piecewise continuous in t, and for each T ∈ [t0,∞), there exists a finite constant
LT such that:

‖f(t, x)− f(t, y)‖ ≤ LT · ‖x− y‖
for each x, y ∈ Rn and t ∈ [t0, T ]. Then the ODE given by (1.1) has exactly one solution on
[t0, T ].

Consider the examples below.

Example.

1. Consider the LTi system given by:

ẋ = Ax+Bu(t), x(t0) = x0 ∈ Rn

Here, f(t, x) = Ax+Bu(t), so:

‖f(t, x1)− f(t, x2)‖ = ‖A(x1 − x2)‖ ≤ ‖A‖2 · ‖x1 − x2‖.

For this example, Theorem 1.43 implies global existence and uniqueness conditions hold
when ‖A‖i <∞, and u(t) is piecewise continuous in t.

2. Consider the system given by:

ẋ = 1 + x2, x(0) = 0.

Solving the ODE directly, we find that x(t) = tan(t) is a solution, but only in the time
range t ∈ [0, π/2). Indeed, for this example, Theorem 1.41 implies local existence and
uniqueness of the solution, as is verified below, but implies nothing regarding the existence
and uniqueness a possible global solution—For each m ∈ R+, when ‖x‖ ≤ m, we have:∥∥∥∥∂f∂x

∥∥∥∥ < 2m.

Remark. (Motivation for the Bellman-Gronwell-Inequality) Consider the system:

Σ : ẏ(t) = µ(t)y(t), y(a) = λ.

Equivalently, we have:

y(t) = λ+

∫ t

0

µ(τ)y(τ)dτ

Intuitively, we expect that the above relations continue to hold true if we replace the equalities
(” = ”) with inequalities (” ≤ ”), i.e. we intuitively expect the following implication to be true:

y(t) ≤ λ+

∫ t

0

µ(τ)y(τ)dτ,

⇒y(t) ≤ λ · exp

(∫ t

a

u(τ)dτ

)
.

In other words, we wish to verify the intuition that implicit inequalities on y(t) can be rewritten
into explicit ones. We formulate this rigorously below.
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Theorem 1.44. Let µ : [a, b]→ R+ and λ ∈ R be given. If y : [a, b] ∈ R is continuous, and:

y(t) ≤ λ+

∫ t

0

µ(τ)y(τ)dτ (1.2)

then:

y(t) ≤ λ · exp

(∫ t

a

µ(τ)dτ

)
Proof. Without loss of generality, suppose t > t0. Define:

Z(t) = λ+

∫ t

t0

µ(τ)y(τ)dτ,

then u(t) ≤ Z(t). In differential form:

d

dt
Z(t) = µ(t)y(t)

Z(t0) = λ

Multiplying both sides of (1.44) by the non-negative function:

µ(t)e
−

∫ t
t0
µ(τ) dτ ≥ 0

we find:

0 ≥
[
y(t)− Z(t)

]
· µ(t)e

−
∫ t
t0
µ(τ) dτ

≥
(
d

dt
Z(t)− Z(t)µ(t)

)
· e−

∫ t
t0
µ(τ) dτ

=
d

dt

(
Z(t) · e−

∫ t
t0
µ(τ) dτ − λ

)
Thus, the function Z(t) · e−

∫ t
t0
µ(τ) dτ − λ is decreasing, and must at any time t be less than its

value at t0:

Z(t) · e−
∫ t
t0
µ(τ) dτ − λ ≤ Z(t0)− λ = 0

⇒y(t) ≤ Z(t) ≤ λ · e−
∫ t
t0
µ(τ) dτ

�

We continue to our final topic, that of whether the solutions to an ODE display contin-
uous dependence on initial conditions.

Definition 1.45 (Continuous Dependence on Initial Conditions). Consider the differ-
ential equation (1.1) (reproduced below):

ẋ = f(x, t), x(t0) = x0,
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and the map:
ψT : (Rn, ‖ · ‖)→

(
Cn[t0, T ], ‖ · ‖∞

)
defined by ψ(x0) = x(·, t, x0). Then ψT is continuous at x0 if, for each ε > 0, there exists some
δ > 0 such that:

‖x(t, t0, x0)− x(t, t0, z0)‖ < ε,

for each t, whenever z0 ∈ Bδ(x0).

Theorem 1.46 (Global Dependence on Initial Conditions). Consider the ODE given by:

Σ : ẋ = f(t, x),

where f is globally Lipschitz continuous in x, and piecewise continuous in t. Fix T ∈ [t0,∞),
and suppose x(·), z(·) satisfy:

ẋ = f(t, x), x(t0) = x0,

ż = f(t, z), z(t0) = z0,

respectively. Then, for each ε > 0, there exists some δ > 0 such that: supt∈[t0,T ) ‖x(t)−z(t)‖ < ε,
whenever ‖x0 − z0‖ < δ.

Remark. Essentially, ψ maps each state x0 ∈ Rn to the trajectory the system would take, if the
initial condition were x0.

Proof. Rewrite the ODE, as satisfied by x(·) and z(·), as follows:

x(t) = x0 +

∫ t

t0

f
(
τ, x(τ)

)
dτ,

z(t) = z0 +

∫ t

t0

f
(
τ, z(τ)

)
dτ.

Applying the triangle inequality twice, followed by the Bellman-Gronwell inequlaity, we have:

‖x(·)− y(·)‖ ≤ ‖x0 − z0‖+

∫ t

t0

‖f
(
τ, x(τ)

)
− f

(
τ, z(τ)

)
dτ

≤ ‖x0 + z0‖+

∫ t

t0

LT · ‖x(τ)− z(τ)‖dτ,

⇒ ‖x(t)− y(t)‖ ≤ ‖x0 − y0‖ · eLT (t−t0) ≤ eLT (t−t0) · ‖x0 − y0‖.

Taking δ ≡ e−LT (t−t0) · ε completes the proof. �

Remark. This result does not hold over infinite time intervals, e.g. ẋ = LTx, for which a tight
bound is reached.
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Nonlinear Systems

:
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Before diving into nonlinear systems theory, we will review the following results from
mathematical analysis.

Definition 2.1. Let S be a subset of Rn

1. S is called open if, for each x0 ∈ S0, there exists some r > 0 such that Br(x0) ⊂ S.

2. S is called closed if its complement in Rn, i.e. Rn\S, is closed.

3. S is called bounded if there exists some K ∈ R+ such that, for each x ∈ S, we have
‖x‖ ≤ K.

4. S is called compact if it is closed and bounded.

Remark. In general, the above definition of compactness will not hold in infinite-dimensional
spaces.

Lemma 2.2.

1. If V : Rn → R is continuous, then for each c ∈ R, the set V −1
(
(−∞, c]

)
is closed in Rn.

2. If h : R → R is decreasing and bounded below, then there exists some unique c ∈ R such
that:

lim
x→∞

h(x) = c.

3. If V : Rn → R is continuous on a compact set S, it is uniformly continuous on S.

4. If V : Rn → R is continuous, with V (0) = 0, V (x) > 0 for each x 6= 0, and V (xn) → ∞
for every unbounded sequence (xn) ⊂ Rn, then for each c ≥ 0, the sublevel set: L(c) ≡
V −1

(
(−∞, c]

)
is compact.

29
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5. If V : Rn → R is continuous, and K is a compact subset of Rn, then V attains maxima
and minima in K. (This is known as the Weierstrass extreme value theorem).

Proof. For detailed proofs, the reader is referred to [9] or [1]. Below, we only prove the fourth
lemma, namely—If V : Rn → R is continuous, with V (0) = 0, V (x) > 0 for each x 6= 0, and
V (xn) → ∞ for every unbounded sequence (xn) ⊂ Rn, then for each c ≥ 0, the sublevel set
L(c) ≡ V −1

(
(−∞, c]

)
is compact.

Fix some c > 0. By the first lemma above, V −1
(
(−∞, c]

)
is closed. Since V (x)→∞ as

‖x‖ → ∞, there exists some R > 0 such that for each x satisfying ‖x‖ ≥ R, we have V (x) > c.
The converse of this statement gives us:

V −1
(
(−∞, c]

)
⊂ BR(0).

�

Theorem 2.3 ([6], Theorem 3.3). Suppose f : Rn × R → Rn is Lipschitz in x in some
subset D of Rn. Moreover, suppose there exists some compact subset W of D such that, for
each x0 ∈ W , the solutions to:

ẋ = f(x, t), x(t0) = x0,

lie in W . Then this solution exists and is unique for each t ≥ t0.

Below, we begin our discussion of Lyapunov stability.

Definition 2.4 (Stable in the Sense of Lyapunov). Let ẋ = f(x) be a time-invariant
system with equilibrium point xe, and suppose there exists some r > 0 such that, if x0 ∈ Br(xe),
the solution x(t, x0) uniquely exists for all t ≥ 0. Then the equilibrium point xe may be described
as follows:

1. xe is called stable in the sense of Lyapunov if, for each ε > 0, there exists some
δ > 0 such that:

‖x(t, x0)− xe‖ < ε

whenever ‖x0 − xe‖ < δ.

2. xe is called unstable if it is not stable.

3. xe is called asymptotically stable if:

• It is stable in the sense of Lyapunov.

• There exists some η > 0 such that when ‖x0 − xe‖ < η, we have limt→∞ ‖x(t, x0)−
xe‖ = 0.

Remark. An alternative definition to Lyapunov stability is as follows—Consider the map:

Φt : Rn → Rn

defined by Φt(x0) = x(t, x0). Then a system is said to be stable in the sense of Lyapunov at
the equilibrium point xe if and only if Φt is continuous at xe, for each t ≥ t0.
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We’ve covered a high-level overview of Lyapunov Stability and covered some of the math
required for understanding it. Now we define Stability in the Sense of Lyapunov and Asymptotic
Stability in the context of Lyapunov Stability, and cover Lyapunov’s Direct Method for proving
stability.

Definition 2.5. Let xe be an equilibrium point of ẋ = f(x) such that there exists a ρ > 0 for
which x0 ∈ Bρ(xe). This implies that x(t, x0) exists for all t ≥ 0 and is unique.

a. xe is SISL if ∀ε > 0, there exists δ > 0 such that ‖x0−xe‖ < δ implies that ‖x(t, x0)−xe‖ <
ε, ∀t ≥ δ

b. xe is unstable otherwise

c. xe is asympotically stable if it is SISL and ∃ν > 0 such theat ‖x0 − xe‖ < ν implies that
limt→∞ ‖x(t, x0)− xe‖ = 0

Remark. Asymptotic Stability is SISL plus Attractivity

Theorem 2.6 (Lyapunov’s Direct Method). Assume xe = 0 is an equilibrium point of ẋ = f(x)
(a time invariant function), and that there exists an open set D about the origin such that

1. f : D → Rn is locally Lipschitz

2. There exists a continuously differentiable (C1) function V : D → R such that

(a) V (0) = 0

(b) V (x) > 0, ∀x ∈ D, x 6= 0

(c) V̇ (x) ≤ 0, ∀x ∈ D

Then xe = 0 is SISL. Additionally, if

(d) V̇ (x) < 0, ∀x 6= 0, x ∈ D

Then xe = 0 is an asymptotically stable equilibrium point.

2.1 Proof of Lyapunov’s Direct Method

This proof is one of the major foundations of nonlinear control theory. We divide the proof
into two parts. First, we prove that parts 1 and 2abc from 2.6 imply that the system is SISL.
Then we prove that a SISL system satisfying 2d from 2.6 is Asymptotically Stable.
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Part 1: SISL

We want to show that

1. ∃ρ > 0 such that ∀x0 ∈ Bρ(0) implies that x(t, x0) exists on [0,∞) and is unique

2. ∀ε > 0, ∃δ > 0 such that ‖x‖ < δ implies that ‖x(t, x0)‖ < ε, ∀t ≥ 0

Our proof combines both. We’ll first define and prove three claims, then combine them to prove
SISL. Let ε > 0. Then we can choose 0 < r ≤ ε such that

B̄r(0) := {x ∈ Rn|‖x‖ ≤ r} ⊂ D (2.1)

(Since D is open) Explain further

PIC HERE

Let’s define α

α := min
‖x‖=r

V (x) > 0 (2.2)

We know that α exists because V is continuous and ‖x‖ = r is a compact set. We also know
that α > 0 because V (x) > 0, x 6= 0. Then we can define a β where 0 < β < α and define

Ωβ := {x ∈ B̄r(0)|V (x) ≤ β} (2.3)

By construction Ωβ ⊂ B̄r(0).

Claim 0: Ωβ ⊂ Br(0)

Proof. Suppose x ∈ Ωβ and ‖x‖ = r. Then V (x) ≥ α (because α = min‖x‖=r V (x)). But
x ∈ Ωβ =⇒ V (x) ≤ β < α. This is a contradiction. Thus, claim 0 is proved. �

Claim 1: Solutions that start in Ωβ stay in Ωβ. If this is true, then by 2.3 ∀x0 ∈ Ωβ, solutions
exist on [0,∞) and are unique.) MISSED EXPLANATION

Proof. Let φ(t) be a solution of ẋ = f(x) defined on [t1, t2] with φ(t1) ∈ Ωβ. We need to show
that

φ(t) ∈ Ωβ for t1 ≤ t ≤ t2 ⇐⇒ V (φ(t)) ≤ β for t1 ≤ t ≤ t2. (2.4)

We have V̇ ≤ 0,∀x ∈ D. Then V (φ(t)) ≤ V (φ(t1)) ≤ β, ∀t ∈ [t1, t2]. Ie, V is non-increasing.
Thus, since V (x) starts in Ωβ it will stay there. �

Claim 2: ∃δ > 0 such that Bδ(0) ⊂ Ωβ

Proof. V (x) is continuous. Thus
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xe = 0 =⇒ ∃δ > 0 such that ‖x− 0‖ < δ =⇒ ‖V (x)− V (0)‖ < β

⇐⇒
‖x‖ < δ =⇒ ‖V (x)‖ < β (since V (0) = 0)

⇐⇒
‖x‖ < δ =⇒ V (x) < β (since V (x) ≥ 0∀x)

=⇒
Bδ(0) ⊂ Ωβ

�

We put the claims together:

‖x0‖ < δ =⇒ x0 ∈ Ωβ (Claim 2)

x0 ∈ Ωβ =⇒ x(t, x0) exists on [0,∞) is unique and remains in Ωβ (Claim 1)

This implies that x(t, x0) ∈ Bε(0) (Claim 0)

Remember that V̇ = LfV = ∂V
∂x
f(x)

Part 2:

Now assume V̇ (x) < 0∀x 6= 0, x ∈ D. We want to show that ∃ν > 0 such that ‖x0‖ < ν =⇒
limt→∞ ‖x(t, x0)‖ = 0. We’ll show that ν = δ works (where δ is from Claim 2).

Claim 3: If ‖x0‖ < δ, then limt→∞ V (x(t, x0)) = 0

Proof.

‖x0‖ < δ =⇒ x(t, x0) ∈ Ωβ∀t ≥ 0

V̇ (x(t, x0)) ≤ 0, ∀t ≥ 0 =⇒ V (x(t, x0)) is non-increasing

˙V (x(t, x0)) ≥ 0 =⇒ ∃c ∈ R such that lim
t→∞

V (x(t)) = c

�

We now use this to show that c = 0. Suppose c 6= 0. Then V (x(t, x0)) ≥ c
2
, ∀t ≥ 0. Then

x(t, x0) never enters Ω c
2
. Since V (x) is continuous at x = 0, ∃d > 0 such that Bd(0) ⊂ Ω c

2
.

Thus, x(t, x0) is contained in the region shown here:

− γ := max
d≤‖x‖≤r

V̇ (x) < 0 (2.5)
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Proof.

V (x(t, x0)) = V (x0) +

∫ t

t0

V̇ (x(τ, x0))dτ (2.6)

≤ V (x0) +

∫ t

t0

−γdτ (2.7)

= V (x0)− γ(t− t0)→ −∞ as t→∞ (2.8)

This is a contradiction. Thus

c = 0 =⇒ V (x(t, x0))→ 0 as t→∞⇐⇒ x(t, x0)→ 0 as t→∞ (2.9)

�

February 21, 2019

Theorem 2.7 (Lyapunov’s Direct Method). Given ẋ = f(x), f(0) = 0 and there exists an
open nbd????? D about x = 0 such that

1. f : D → Rn is locally Lipschitz

2. ∃V : D → R, V ∈ C1 such that

(a) V (0) = 0

(b) V (x) > 0, ∀x ∈ D, x 6= 0

(c) V̇ (x) ≤ 0, ∀x ∈ D
(d) V̇ (x) < 0, ∀x ∈ D x 6= 0

If cases abc are fulfilled, it’s SISL. If abcd, it’s AS.

Theorem 2.8. (Converse Lyapunov Theorem) For all the Lyapunov theorems, there exist con-
verse theorems. If a function is SISL, there must exist a Lyapunov function which shows that
it’s SISL. If a function is AS, there must exist a Lyapunov function which shows that it’s AS.
And so on.

Definition 2.9 (Globally Asymptotic Stability (GAS)). xe = 0 is GAS if it is SISL and
∀x0 ∈ Rn, x(t, x0) exists on [0,∞) and MISSED THE REST

Theorem 2.10. Let xe = 0 be an equilibrium point of ẋ = f(x). Let V : Rn → R be a
continuous differentiable function such that

1. V (0) = 0, V (x) > 0, ∀x 6= 0

2. V (x)→∞ as ‖x‖ → ∞ (It’s must be radially unbounded)

3. V̇ (x) < 0, ∀x 6= 0

Then xe = 0 is GAS.

Why must V be radially unbounded? It captures the notion of observability.
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Example:

Let’s take the Lyapunov function

V (x) =
x21

1 + x21
+ x22 (2.10)

Condition (a) holds, as V (0) = 0, and V (x) > 0, x 6= 0. Condition (c) holds, as we assume
that V̇ (x) < 0, ∀x 6= 0
INSERT PICTURE HERE
As we can see, if you’re farther away you won’t converge to zero.

2.1.1 Example: Mass-Spring Damper

: Let’s take a nonlinear mass spring damper system

mẍ+ bẋ+ k(x) = 0 (2.11)

INSERT PICTURE HERE
The spring has a nonlinear spring force k that looks like this
INSERT PICTURE HERE
We can see that xk(x) > 0, x 6= 0. Thus the function is Lyapunov for the disc ‖x‖ < d.

We can define our state as q = [x, ẋ]T , and get

q̇1 = q2 (2.12)

q̇2 = − b

m
q2 −

k(q1)

m
(2.13)

In order to prove stability, we need to find a Lyapunov function satisfying the conditions
of THEOREM. We suggest a candidate Lyapunov function equal to the total energy KE+PE.
We know that

KE =
1

2
mq22 (2.14)

PE =

∫ q1

0

k(σ)dσ (2.15)

Thus

V (q) =
1

2
mq22 +

∫ q1

0

k(σ)dσ (2.16)

Let’s check our conditions:

Condition (a):

V (0, 0) =
1

2
m02 +

∫ 0

0

k(σ)dσ = 0 (2.17)

Since k is locally Lyapunov, we know that

V (q1, q2) > 0, (q1, q2) 6= 0, |q1| < d, q2 ∈ R (2.18)
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Condition (b): We’re only proving local stability, so we don’t need this

Condition (c): We can find the derivative

V̇ (q1, q2) =
∂V

∂q1
q̇1 +

∂V

∂q2
q̇2 (2.19)

= k(q1)q2 − bq22 − k(q1)q2 (2.20)

= −bq22 (2.21)

Since V̇ only depends on q2, it can be zero when q1 is nonzero. Thus we only have SISL.
Now, we know that the system is a mass spring damper, so we know that it’s asymptot-

ically stable. But we only proved SISL. What went wrong? We need to either

• Try a different (better) Lyapunov function

• Prove a better theorem

Let’s find a better Lyapunov function first. Let’s try the function

W =
1

m

∫ q1

0

k(σ)dσ + [q1, q2]

 1
2

(
b
m

)2
1
2
b
m

1
2
b
m

1

[ q1
q2

]
(2.22)

We can see that

• W (0, 0) = 0

• W (q1, q2) > 0, ∀(q1, q2) 6= (0, 0), |q1| < d

• Ẇ (q1, q2) = −b
2m
q1k(q1)− b

2m
q22 < 0, ∀(q1, q2) 6= (0, 0)

Thus we see it’s asymptotically stable.

Now let’s try to prove a better theorem:

Theorem 2.11 (LaSalle’s Invariance Theorem (Corr 4.1)). Let xe = 0 be an equilibrium point
of ẋ = f(x), where f is locally Lipschitz. Assume that there exists an open set D containing
xe = 0 and a Lyapunov function V : D → R, V ∈ C1, such that

1. V (0) = 0, V (x) > 0, ∀x ∈ D, x 6= 0

2. V̇ (x) ≤ 0, ∀x ∈ D

Let S = {x ∈ D|V̇ (x) = 0}, and suppose that the only function φ : [0, T ]→ Rn that satisfies

3. φ̇(t) = f(φ(t)) (which means that φ(t) is a solution to the differential equation)

4. φ(t) ∈ S, 0 ≤ t ≤ T is φ(t) ≡ 0.
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Then xe = 0 is asymptotically stable

Let’s use this to check our first Lyapunov function, where V̇ (q1, q2) = −bq22. We define

S = {x ∈ D|V̇ (q1, q2) = 0} = {x ∈ D||q1| < d, q2 ≡ 0} (2.23)

Where
D = {q ∈ R2||q1| < d, q2 ∈ R} (2.24)

Let φ(t) =

[
φ1(t)
φ2(t)

]
be a solution that lies in S. Thus φ2(t) ≡ 0 for |φ1(t)| < d, ∀t.

MISSED THE REST

Definition 2.12 (Instability:). Let’s take the system

ẋ = f(x), f(0) = 0 (2.25)

We say that xe = 0 is unstable if

∃ε > 0 such that ∀δ > 0, ‖x0‖ < δ =⇒ ∃T > 0, ‖x(T, x0)‖ ≥ ε (2.26)

In other words, an equilibrium point is unstable if there exists some ball of radius ε such that
for all balls, an initial condition within the ball will lead to a the function leaving the ball of
radius ε.

2.1.2 Examples:

INCLUDE PICTURES

February 26, 2019

Last time we covered Global Asymptotic Stability, LaSalle’s theroem, and a bit of in-
stability. Today we conclude our coverage of instability and Quadratic Lyapunov functions.

Quick review of LaSalle’s theorem:

Theorem 2.13. W4e have ẋ = f(x), f(0) − 0, and D ∈ R, with 0 ∈ D. We have a function
V : D → R, with V ∈ C1 such that

1. V (0) = 0, V (x) > 0, ∀x ∈ D, x 6= 0

2. V̇ ≤ 0 on D

Let S = {x ∈ D|V̇ = 0} and suppose that the only solution in S is x(t) ≡ 0. Then xe = 0 is
asymptotically stable.

LaSalle’s Invariance Principle
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Theorem 2.14. Let’s take S = {x ∈ D|V̇ = 0} and let M be the largest invariant set in S,
then M is asymptotically stable. If M = {0}, then 0 is asymptotically stable. If M is a larger
set, you cannot say anything about the asymptotic stability of any of those points.

Example: We have a harmonic oscillator

ẍ+ ẋ+ sin(x) = 0 (2.27)

and define x1 = x and x2 = ẋ. We then have

ẋ1 = x2 (2.28)

ẋ2 = −x2 − sin(x1) (2.29)

If we define V = KE + PE, we have

V̇ = −x22 ≤ 0 (2.30)

We find an S
S = {x ∈ R2|V̇ (x1, x2) = 0} = {x1 ∈ R, x2 = 0} (2.31)

On S we have

ẋ1 = 0 (2.32)

ẋ2 = − sinx1 = 0 when x1 = kπ, K ∈ Z (2.33)

Now we define M
M = {(kπ), 0), k ∈ Z} (2.34)

If we define D as
D = {(−π, π)× R} (2.35)

then
M = {(0, 0)} (2.36)

Thus (0, 0) is locally asymptotically stable.

2.1.3 Instability

Definition 2.15. xe = 0 is unstable if ∃ε > 0 such that ∀δ > 0, ∃x0 with ‖x0‖ < δ and T > 0
such that ‖x(T, x0)‖ > ε

We want to find a sufficient condition for an equilibrium point to be stable. Let’s try

1. V (0) = 0

2. V (x) > 0, ∀x ∈ D, x 6= 0

3. V̇ > 0, ∀x ∈ D, x 6= 0

This is much stronger than required, since it states that the equilibrium point is anti-stable.
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Example

:

ẋ1 = −x1 (2.37)

ẋ2 = x2 (2.38)

We find a Lyapunov function

W (x1, x2) =
1

2
x21 +

1

2
x22 (2.39)

where
Ẇ (x1, x2) = −x21 + x22 (2.40)

This doesn’t fulfill the above conditions, but we know that the system is unstable. We can look
at this other function

V̄ = −1

2
x21 +

1

2
x22 (2.41)

This isn’t positive definite, but its derivative is. What does this mean? I have no idea

Theorem 2.16 (Chetaev’s instability theorem). Let xe = 0 be an equilibrium point of ẋ = f(x).
Suppose that there exists an open set D of the origin on which f is locally Lipschitz and that
there exists a V on that open set V : D → R, where V ∈ C1 such that

1. V (0) = 0

2. ∀δ > 0, ∃x0 ∈ Bδ(0) such that V (x0) > 0

3. ∃ε > 0 such that V̇ (x) > 0 on

U := {x ∈ Bε(0)|V (x) > 0} ⊂ D (2.42)

Then xe = 0 is unstable.

2.1.4 Linearization and Quadratic Lyapunov functions

Let’s look at the linear system ẋ = Ax, x ∈ Rn. We’ll define some terms

Definition 2.17 (Quadratic function). Let P ∈ Rn×n. A function

V (x) = xTPx (2.43)

is a quadratic function

Definition 2.18 (Symmetric matrix). A matrix M is symmetric if MT = M

Definition 2.19 (Anti-Symmetric matrix). A matrix M is anti-symmetric (also called skew-
symmetric) if MT = −M
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We can define any matrix P as a sum of a symmetric and skew-symmetric matrix. We
have

P =

(
P + P T

2

)
+

(
P − P T

2

)
(2.44)

The first term is symmetric, while the second is skew-symmetric. Now let’s use P to define a
quadratic function. We maintain that

f(x) = xTPx = xT
(
P + P T

2

)
x (2.45)

Why is this? Since xTAx is a scalar,

xTAx = (xTAx)T = xTATx (2.46)

Thus we need A = AT The only way that this happens for a skew-symmetric matrix is if
A = AT = 0. Thus, we can assume that for every quadratic function P = P T .

Definition 2.20 (Positive Definite Function). V (x) = xTPx is a positive definite function if
xTPx > 0,∀x 6= 0. One says that P is a positive definite matrix and write this as P � 0. If
P is symmetric (and we usually assume that it is), then if P � 0, λi{P} > 0. Another test:
Missed This

Definition 2.21 (Negative definite matrix). A symmetric matrix Q is negative definite if
−Q � 0, which implies that λi{Q} < 0

2.1.5 Lyapunov Equation

If we define ẋ = Ax and V (x) = xTPx, P � 0. Then

V̇ (x) = ẋTPx+ xTPẋ (2.47)

= xTATPx+ xTPAx (2.48)

= xT (ATP + PA)x = −xTQx, Q ≺ 0 (2.49)

When ∃P � 0 and Q
Missed This

February 26th, 2019, Frank’s Version

Theorem 2.22 (LaSalle’s Invariant Principle). Let S ≡ {x ∈ D|V̇ (x) = 0}, and let M be
the largest invariant set in S. Then M is asymptotically stable.

Example. Consider the simple harmonic oscillator given by:

ẍ+ ẋ+ sinx = 0,

⇒

{
ẋ1 = x2,

ẋ2 = −x2 − sinx1
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and consider the candidate Lyapunov function V (x1, x2) defined using the total energy (kinetic
+ potential) in the system:

V (x1, x2) =
1

2
x22 + 1− cosx1,

⇒ V̇ (x1, x2) = x2(x2 − sinx1) + sin x1 · x2 = −x22 ≤ 0.

By definition, the set S is contained in the zero level set of V , as follows:

S ≡ {x ∈ R2|V (x) = 0} = R× {0},

and the dynamics on S become:

ẋ1 = 0,

ẋ2 = − sinx.

Observe that x1 and ẋ2 are constant. Thus, we have:

M = {(kπ, 0)|k ∈ Z}

Thus, if we constrain D = (−π, π)× {0}, then M = {(0, 0)} is asymptotically stable.

Definition 2.23 (Unstable Equilibrium Point). Let Σ : ẋ = f(x) be a system with an
equilibrium at 0. The equilibrium point 0 is said to be unstable if there exists some ε > 0,
such that for each δ > 0, there exists some x0 ∈ Bδ(0) and t > 0 such that:

‖x(t, x0)‖ ≥ ε

.

Definition 2.24 (Anti-Stable Equilibrium Point). An equilibrium point is called anti-
stable if there exists some ε > 0 such that, for each x0 ∈ Rn:

‖x(t, x0)‖ ≥ ε

for each t.

Below, we wish to construct a set of sufficient conditions that guarantee an equilibrium
point to be unstable. Consider the example below.

Example. Consider the (linear) system given by:

ẋ1 = −x1,
ẋ2 = x2.

The total energy function is thus:

W (x1, x2) =
1

2
x21 +

1

2
x22,

⇒ Ẇ (x1, x2) = x1ẋ1 + x2ẋ2 = −x21 + x22.
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Since Ẇ is not neither non-negative nor non-positive for all x, Lyapunov’s Stability Theorems
do not provide any information regarding the stability of the equilibrium point (x1, x2) = (0, 0).

However, from linear system theory, we know that this system is unstable. However,
consider the function V (x1, x2), given by:

V (x1, x2) = −1

2
x21 +

1

2
x22,

V̇ (x1, x2) = x21 + x22 ≥ 0,

Observe that V̇ (x1, x2) > 0 for each x 6= 0. Geometrically, the level sets of V (hyperbolas)
show x to be unstable if x20 6= 0.

Theorem 2.25 (Chetaev’s Instability Theorem). Let xe = 0 be an equilibrium point of
the system ẋ = f(x). Suppose there exists some open set D, containing 0, such that f is locally
Lipschitz on D, and some C1 function V : D → R, such that:

• V (0) = 0.

• For each δ > 0, there exists some x0 ∈ Bδ(0) such that V (x0) > 0.

• There exists some ε > 0 such that V̇ (x) > 0 on the set:

U ≡ Bε(0) ∩ V −1{(0,∞)}

Moreover, U ⊂ D.

Then xe = 0 is unstable.

Definition 2.26 (Symmetric, Anti-Symmetric, Positive Definite, Negative Definite
Matrices). A square matrix P ∈ Rn×n is called:

1. Symmetric, if P T = P ,

2. Anti-symmetric, if P T = P ,

3. Positive definite, if P T = P and σ(P ) ⊂ R+.

4. Positive semi-definite, if P T = P and σ(P ) ⊂ R+.

5. Negative definite, if P T = P and σ(P ) ⊂ R−.

6. Negative semi-definite, if P T = P and σ(P ) ⊂ R−.

Here, σ(P ), the spectrum of P , denotes the set of all eigenvalues of P .

The above definitions are associated with a number of commonly known and/or used
results, e.g. a symmetric matrix P is negative definite if and only if −P is positive definite.
For more details, the reader is referred to [5]. Positive definiteness, positive semi-definiteness,
negative definiteness, negative semi-definiteness are concepts closely related to that of the
quadratic form, as defined below.
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Definition 2.27 (Quadratic Form). Let P ∈ Rn×n and x ∈ Rn. Then V (x) = xTPx is called
a quadratic form.

The following proposition explains why it suffices to study the quadratic form for sym-
metric P .

Proposition 2.28. For any P ∈ Rn×n and x ∈ Rn:

xTPx = xT
(
P + P T

2

)
x

Proof. Since xTPx ∈ R, we have:

xTPx = (xTPx)T = xTP Tx,

⇒xTPx =
1

2
· 2xTPx =

1

2
(xTPx+ xTP Tx) = xT

(
P + P T

2

)
x

�

Below, we define what it means for a function (positive definite) to be positive definite.

Definition 2.29 (Positive Definite Function). The function V (x) = xTPx is a positive
definite function if V (x) > 0 for each x 6= 0.

Remark. Observe that, if V (x) = xTPx > 0 for each x 6= 0, and P T = P , then P is a positive
definite matrix.

Now, consider the linear system ẋ = Ax, with the value function V (x) = xTPx, where
P > 0. Then:

V̇ (x) = ẋTPx+ xTPẋ = (Ax)TPx+ xTP (Ax)

= xT (ATP + PA)x

Thus, to show stability, we must demonstrate the existence of some P,Q > 0 such that:

Q ≡ −(ATP + PA) > 0.

February 28th, 2019
Last time we looked at the Lyapunov conditions for instability, as well as quadratic

Lyapunov equations. We primarily looked at this in the context of the Lyapunov Equation,
which is used to prove stability of linear systems. For a system

ẋ = Ax, V (x) = xTPx, P � 0 (2.50)

We have
V̇ (x) = xT (ATP + PA)x =: −xTQx (2.51)

We want to know when ∃P � 0, Q � 0 such that

ATP + PA = −Q (2.52)
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Theorem 2.30. Given an n× n real matrix A, the following are equivalent:

1. All eigenvalues of A have negative real parts (A is Hurwitz)

2. There exists some positive definite Q such that ATP + PA = −Q has a unique solution
P where P � 0

3. For all Q > 0, the equation ATP + PA = −Q has a unique solution P where P � 0

To solve the equation, we can then choose Q as an arbitrary positive definite matrix
(such as I). Then we solve for P .

2.1.6 LaSalle’s Theorem and Observability

Earlier, we stated that LaSalle’s theorem captures the observability of the nonlinear system.
We’ll not illustrate this with a linear system. Note, you’ll never need to actually use LaSalle’s
for a linear system, since if a system is asymptotically stable, you can just make Q positive
definite and find out. However, it’s useful here for illustrative purposes. Let’s say that we set
Q to be some positive semidefinite matrix. Thus

ATP + PA = −Q � 0 (2.53)

This means that the system is SISL. Let’s say that we set Q = CTC, where

ẋ = Ax+Bu (2.54)

y = Cx (2.55)

In this case

V̇ (x) = −xTQx = −xTCTCx = −yTy (2.56)

Since Q is negative semidefinite, this means that for some x, V̇ can equal 0. Since yTy = 0, we
know that y = 0. If the system is asymptotically stable, then we must have

V̇ = 0 =⇒ x = 0 (2.57)

This means that we need

y = 0 =⇒ x = 0 (2.58)

This is only the case if the system is observable.

2.1.7 Lyapunov’s Indirect Method

We now show how these results can be extended to nonlinear systems. To do that, we’ll need
to linearize the nonlinear systems.
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Linearization:

Let’s say we have a system
ẋ = f(x), f(xe = 0) = 0 (2.59)

Then we have

A :=
∂f

∂x
(xe) (2.60)

This is just the Jacobian of f . The linearization is thus

˙̄x = Ax̄ (2.61)

where
x̄ = x− xe (2.62)

A Taylor series expansion yields

f(x) = f(0) + Ax+R(x) (2.63)

where R(x) satisfies

lim
‖x‖→0

‖R(x)‖
‖x‖

= 0 (2.64)

Basically, we want R(x) to satisfy that for all γ > 0, there exists a σ > 0 such that

x ∈ Bσ(0) =⇒ ‖R(x)‖ ≤ γ‖x‖ (2.65)

Remember that the Cauchy-Schwartz Inequality states that

∀x, y ∈ Rn, xTy ≤ |xTy| ≤ ‖x‖2‖y‖2 (2.66)

Theorem 2.31 (Lyapunov’s Indirect Method). Consider ẋ = f(x), where f ∈ C1 and f(xe =
0) = 0.

1. If the linearization of the system about xe has only eigenvalues with negative real parts,
then the nonlinear system is locally asymptotically stable about xe.

2. If the linearization has at least one eigenvalue with a positive real part, then xe is unstable
for ẋ = f(x)

3. If the linearization has at least one eigenvalue with real part equal to zero, and all other
eigenvalues have negative real parts, then no conclusion can be made.

Let’s start by proving the third condition by contradiction.

Proof. Let’s examine two systems
f1(x) = −x3 (2.67)

and
f2(x) = x3 (2.68)
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The linearizations of both of these systems are

ẋ = 0 (2.69)

However, we know that the first system is asymptotically stable, while the second is unstable.
Thus, we cannot make a conclusion about the stability if an eigenvalue is zero. �

Let’s now prove the first condition

Proof. Let’s consider a system f(x) with a linearization

ẋ = Ax (2.70)

Let’s state that A has only negative real eigenvalues, and is therefore Hurwitz. Now let’s
consider the quadratic Lyapunov function

V (x) = xTPx (2.71)

and differentiate along ẋ = f(x) = Ax+R(x). Where A is the Jacobian of f(x), and R(x) are
the remaining terms of the Taylor expansion. We take

LfV =
∂V

∂x
f (2.72)

= 2xTPAx+ 2xTPR(x) (2.73)

(2.74)

We can rearrange 2xTPAx to be xT [ATP +PA]x (since xTCx is a scalar, and therefore is equal
to its transpose). Now this is just the Lyapunov equation. Since A is Hurwitz, we know that
we can find some P such that ATP + PA = −I. Ths we have

− xTx+ 2xTPR(x) (2.75)

Now we use Cauchy-Schwartz on xTPR(x).

xTPR(x) ≤ |xTPR(x)| ≤ ‖x‖2‖PR(x)‖2 ≤ ‖x‖2‖P‖i‖R(x)‖2 (2.76)

When x ∈ Bσ(0), we know that ‖R(x)‖2 ≤ γ‖x‖2. Thus

xTPR(x) ≤ ‖x‖2‖P‖i‖R(x)‖2 ≤ γ‖x‖2‖P‖i‖x‖2 = γ‖P‖i‖x‖22 = γ‖P‖ixTx (2.77)

Going back to V̇ (x), we know know that

V̇ (x) = −xTx+ 2xTPR(x) ≤ −(1− 2γ‖P‖i)xTx (2.78)

We choose γ such that
1− 2γ‖P‖i > 0 (2.79)

or

γ <
1

2‖P‖i
(2.80)

Thus
V̇ (x) ≺ 0, ∀x 6= 0, x ∈ Bσ(0) (2.81)

Thus, the system is locally asymptotically stable with region of attraction σ. �
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The proof for the unstable case is similar. We have two cases

Case I. A has no eigenvalues with real part equal 0, and has at least one eigenvalue with real part
greater than zero.

Proof. Our objective is to construct a V (x) such that V̇ (x) � 0 and V (x) takes on positive
values arbitrarily near the origin.

First, we use a similarity transformation to break A into two parts, one with positive
eigenvalues, and one with negative.

Ā = MAM−1 =

[
Ā11 0
0 Ā22

]
(2.82)

Ā11 has negative eigenvalues, and Ā22 has positive eiganvalues. Thus Ā11 is Hurwitz and
−Ā22 is Hurwitz. Thus we solve two equations

(a) Solve

Ā11P̄11 + P̄11Ā
T
11 = I1 =⇒ P̄11 ≺ 0 (2.83)

(b) Solve

Ā22P̄22 + P̄22Ā
T
22 = I2 =⇒ P̄22 � 0 (2.84)

We’ll continue next time. �

Case II. A has at least one eigenvalue with real part equal to 0, and at least one with real part
greater than 0.

Note: V (x) = xTPx is a valid Lyapunov function for all linearized systems. It’s there-
fore also a valid Lyapunov function for the nonlinear system (at least locally). While better
Lyapunov functions can be found, this should be your first attempt.

March 5th, 2019
Time-Varying Systems:
Below, we will discuss time-varying systems, i.e. systems whose dynamics change with

time. One can think of a time-varying system as one in which the state is placed in a different
time-invariant system for each infinitesimal time interval. We begin with the definition of an
equilibrium point for a time-varying system.

Definition 2.32 (Equilibrium Point: Time-Varying Case). Given a time-varying system
Σ : ẋ = f(t, x), x(t0) = x0, the point x = xe is called an equilibrium point of Σ if f(t, xe) = 0
for each t ≥ t0.

Time-varying systems exhibit less predictable properties than time-invariant systems.
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• Region of Attraction:

The region of attraction of an asymptotically stable time-varying system (as defined
shortly below) may depend on t0. In the worst case scenario, the region of attraction may
shrink to the trivial case {xe}, as t0 →∞. This is illustrated in Figure INCOMPLETE
below.

• Rate of Convergence:

Even if an asymptotically stable time-varying system is stable for each choice of
t0, the rate of convergence of the system may depend on t0. This is illustrated in Figure
INCOMPLETE below.

• Lyapunov’s Stability Theorem:

Even if the conditions in Lyapunov’s Stability Theorem (for time-invariant systems)
hold for a time-varying system, i.e. there exists some continuously differentiable function
V (t, x) satisfying V (t, x(t)) > 0, V̇ (t, x) ≤ 0 for each t ≥ t0 and x 6= 0, the system may
not be stable in the sense of Lyapunov. This indicates that the time-invariant version of
Lyapunov’s Stability Theorem, as stated above, must be modified to render it applicable
to time-varying systems. A counterexample will be provided after definitions for different
notions of stability (for time-varying systems) have been established.

Below, consider the system:

ẋ = f(t, x), x(t0) = x0 (2.85)

Definition 2.33 (Stable in the sense of Lyapunov). The equilibrium point x = 0 is called
a stable equilibrium point of the system (2.85) if, for any t0 ≥ 0 and ε > 0, there exists
some δ(t0, ε) such that:

|x0| < δ(t0, ε) ⇒ |x(t)| < ε, ∀ t ≥ t0,

where x(t) is the solution to (2.85), starting from x(t0) = x0.

Definition 2.34 (Uniformly Stable).

1. The state xe ≡ 0 is called uniformly stable if, for each x0 ∈ Rn and t0 ∈ R, the
mapping:

x(t) = Φ(t, t0)x0

is bounded by some positive constant.

2. The equilibrium point x = 0 is called a uniformly stable equilibrium point of the
system if it achieves the criterion for stable equilibrium points, with some δ(ε) that is
independent of t0.

In essence, a stable (in the sense of Lyapunov) equilibrium point is uniformly stable if
the associated upper bounds δ(t0, ε) for its norms never approach 0, i.e.:

inf
t0∈R

δ(t0, ε) > 0
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Definition 2.35 (Asymptotically Stable). The state xe ≡ 0 is called asymptotically
stable if:

1. xe ≡ 0 is a stable equilibrium point of (2.85), and

2. x(t) converges to 0, i.e. lim
t→∞

Φ(t, t0) = 0. If this condition is met, x = 0 is said to be

attractive.

The reader may question whether it is necessary to specify the first condition ”xe ≡ 0 is
a stable equilibrium point of (2.85)” if the second statement ” lim

t→∞
Φ(t, t0) = 0” already holds

true. The following example answers this question in the affirmative.

Example. Consider the dynamical system given by:

ẋ1 = x21 − x22
ẋ2 = 2x1x2.

The phase portrait of this system indicates that, although all trajectories following this system
tends to x = 0 as t → ∞, those particularly close to the x-axis will initially move far away
from the origin before returning. In fact, one can choose a sequence of trajectories, increasingly
closer to being parallel to the x-axis, such that the maximum distance (in time) between each
trajectory and the origin increases as the sequence progresses. In this sense, x = 0 is not stable,
even though it is attractive.

Definition 2.36 (Uniformly Asymptotically Stable). The state xe ≡ 0 is called uni-
formly asymptotically stable if:

1. xe ≡ 0 is a uniform stable equilibrium point of (2.85), and

2. x(t) converges uniformly to 0, i.e. ∃δ > 0, and γ(τ, x0) : R+ × Rn → R+ such that,
whenever |x0| < δ:

‖φ(t, t0)‖ ≤ γ(t− t0, x0)
lim
τ→∞

γ(τ, x0) = 0

Let φ(t, x0, t0) denotes the trajectory of the system ẋ = f(x, t), x(t0) = t0, starting from
x0 at time t0. Then the second condition above is equivalent to the following statement—
∃δ and some non-decreasing function T : R+ → R+ such that, whenever |x0| < δ:

|φ(t1 + t, x0, t1)| < ε

for each t1 ≥ t0.

The definitions of asymptotic stability do not quantify the speed of convergence of tra-
jectories to the origin, e.g. 1/t, 1/

√
t, etc. However, there is a particularly strong form of

stability that demands an exponential rate of convergence.
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Definition 2.37 (Exponentially Stable, Rate of Convergence). The state xe ≡ 0 is called
exponentially stable with rate of convergence α if xe ≡ 0 is stable, and ∃M,α > 0 such
that:

‖x(t)‖ ≤Me−α(t−t0) · |x0|

Clearly, if a system is exponentially stable, it is uniformly asymptotically stable. We
will later show that, for linear systems (whether time-invariant or time-varying), the converse
is also true.

First, consider the following example, which shows that the time-invariant version of
Lyapunov’s stability theorem is not applicable to time-varying systems.

Example. Consider the system Σ : ẋ = x, x(t) = x0 6= 0. Clearly, this system is exponentially
unstable. However, if we take V (t, x) ≡ e−3tx2, then we find that:

V (t, 0) = 0,

V (t, x) > 0, ∀ t, ∀x 6= 0. ˙V (t, x) = e−3tx2 ≤ 0,

with ˙V (t, x) = 0 if and only if x = 0. This appears to contradict Lyapunov’s stability theorem.
The reality is, however, that the previously given version of Lyapunov’s stability theorem does
not hold for time-varying systems.

In this particular example, the reason for this contradiction arises from the fact that as
t→∞, we have x(t) = etx0 →∞, but V (t, x) = e−tx20 → 0. This indicates that, to generalize
the previously given version of Lyapunov’s Stability Theorem to the time-varying case, we must
upper bound V (t, x) by some function of x that approaches ∞ when |x| → ∞.

The Basic Stability Theorem of Lyapunov, presented below, illustrates that the different
definitions of stability mentioned above can be directly characterized by an energy function
V (x, t) that describes the system. This energy function is often upper and/or lower bounded
by a set of continuous functions with particular properties. We first present definitions of broad
classes of functions that satisfy these properties.

Definition 2.38 (Classes of Functions, Part 1).

1. A function α(·) : R+ → R+ belongs to class K, denoted by α(·) ∈ K, if it is continuous,
strictly increasing, and α(0) = 0.

2. A function α(·) : R+ → R+ belongs to class KR, denoted by α(·) ∈ K, if α ∈ K and
α(p)→∞ as p→∞.

Below, we characterize functions that behave locally and globally ”like an energy func-
tion,” in the sense that they increase in the direction away from the origin (which can, in the
context of these definitions, be intuitively thought of as an attractive equilibrium point).

Definition 2.39 (Classes of Functions, Part 2).
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1. A function v(x, t) : Rn × R+ → R+ is called locally positive definite (l.p.d.) if it is
continuous, and there exists some h > 0 and some function α(·) ∈ K such that:

v(0, t) = 0,

v(x, t) ≥ α(|x|), ∀x ∈ Bh, t ≥ 0

2. A function v(x, t) : Rn × R+ → R+ is called (globally) positive definite (p.d.) if it
is continuous, and there exists some function α(·) ∈ KR such that:

v(0, t) = 0,

v(x, t) ≥ α(|x|), ∀x ∈ Rn, t ≥ 0

3. A function v(x, t) → Rn × R+ → R+ is called decrescent if it is continuous, and there
exists some function β(·) ∈ K such that:

v(x, t) ≤ β(|x|), ∀x ∈ Bh, t ≥ 0

Remark. If v(x, t) does not explicitly depend on the time t, it must be decrescent. This is
because it is either bounded above by a function of class K, or unbounded above, in which
case it is bounded by itself. In addition, if v(x, t) is decrescent, then v(0, t) ≤ β(0) = 0. (The
equality follows from β(·) ∈ K).

Examples are given below for each of the above types of functions.

Example (Examples of l.p.d., p.d., and decrescent functions). Here are some examples
of energy-like functions and their membership in the various classes introduced above. It is an
interesting exercise to check the appropriate functions of class K and KR that can to be used
to verify these properties.

For the examples below, P is positive definite, whereas Q is not. No other information
is assumed about P or Q.

Table 2.1: Classification of Value Functions

v(x, t) l.p.d.f. p.d.f. Decrescent
(1) |x2| Yes Yes Yes
(2) xTPx Yes Yes Yes
(3) (t+ 1)|x|2 Yes Yes No
(4) e−t|x|2 No No Yes
(5) sin2(|x|2) Yes No Yes
(6) etxTQx No No No
(7) x21 + x42 Yes Yes Yes
(8) x81 No No Yes
(9) (x1 + x2)

4 No No Yes
(10) x21 + (sinx2)

2 No No Yes
(11) 1

1+t
(x21 + x22) No No Yes
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(Examples (1)-(6) can be found in Professor Sastry’s text [10], while Examples (7)-(11)
are from Professor Sreenath’s notes.)

The theorem below illustrates how imposing an increasingly strict set of conditions on
the value function v(x, t) and its time derivative v̇(x, t), defined along the trajectory of the
system’s state, allows us to make increasingly stronger claims regarding the stability of the
system. In particular, we define v̇(x, t) as:

dv

dt
(x, t)

∣∣∣∣∣ ẋ=f(x,t)

x(t0)=x0

=
∂v

∂t
(x, t) +

∂v

∂x
(x, t)

dx

dt

=
∂v

∂t
(x, t) +

∂v

∂x
(x, t)f(x, t)

This is called the Lie derivative of v(x, t) along f(x, t).

Theorem 2.40 (Basic Lyapunov Theorems). Sets of conditions on v(x, t) and v̇(x, t) are
associated with notions of internal stability as given in the following table. Without loss of
generality, we have placed the equilibrium point at the origin.

Table 4.1

Table 2.2: Basic Lyapunov Theorems

Conditions on Conditions on Conclusions
v(x, t) −v̇(x, t)

1 l.p.d.f. ≥ 0 locally stable
2 l.p.d.f., decrescent ≥ 0 locally unif. stable
3 l.p.d.f., decrescent l.p.d.f. unif. asymp. stable
4 p.d.f., decrescent p.d.f. globally unif. asymp. stable

March 7th, 2019
Last time we covered time-varying systems. This time we cover Lyapunov results for

time varying systems and exponential stability, and do a review.
Arrived late and missed the first part

2.1.8 Exponential Stability

Consider ẋ = f(t, x), f(t, 0) = 0∀t ≥ t0

Definition 2.41. x = 0 for ẋ = f(t, x) is exponentially stable if ∀t ≥ t0, there exists a σ > 0,
a γ > 0, and an N <∞ such that

(i) ∀x0 ∈ Bσ(0), the solution x(t, t0, x0) exists and is unique
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(ii) ‖x(t, t0, x0)‖ ≤ N‖x0‖e−γ(t−t0), ∀t ≥ t0, ∀x0 ∈ Bσ(0)

Remark: If σ, γ,N can be chosen independently of t0, then xeq = 0 is uniformly expo-
nentially stable.

Why do we want exponential stability instead of asymptotic stability? Rate of conver-
gence and robustness. With exponential stability we can assign a rate of convergence. Also,
small linear perturbations on an asymptotically stable system will distabilize it, while small
linear perturbations on an exponentially stable system will not.

Theorem 2.42. Given the system x = f(t, x), f(t, 0) = 0, ∀t ≥ t0, where f is piecewise
continuous in t and Lipschitz continuous in x. Then a sufficient condition for x = 0 to be
uniformly exponentially stable is that there exists some V where V : [0,∞)×Rn → R and there
exist constants α, β, γ, r > 0 such that ∀x ∈ Br(0) and ∀t ≥ t0.

(a) αxTx ≤ V (t, x) ≤ βxTx

(b) V̇ (t, x) ≤ −γV (t, x)

This uses Lyapunov’s direct method. You can also use the indirect method to get

Theorem 2.43 (Key to all Linear Control Theory). Consider a time-invariant system ẋ =
f(x), f(0) = 0. Then x = 0 is exponentially stable if and only if all eigenvalues of the jacobian
A = ∂F

∂x
(0) have negative real parts.

Note that this means that all nonlinear systems that are locally asymptotically stable are
also locally exponentially stable, unless their linearizations have at least one zero eigenvalue.

2.2 Review

2.2.1 Level Sets

Given some Lyapunov function V : D → R where V (0) = 0, and V (x) > 0, ∀x 6= 0, and given
some ball Br(0) ∈ D, inside which its derivative V̇ (x) < 0, ∀x 6= 0, is the function Lyapunov
stable for all points x0 ∈ Br(0)?

No it’s not. V̇ (x) < 0 implies that x will move into smaller and smaller level sets of V .
However, there’s nothing saying that Br(0) is a level set of V . If the level sets of V extend
outside of Br(0), then x may evolve outside of Br(0). Since x is outside Br(0) V̇ (x) is no longer
guaranteed to be negative, so the function could be unstable.

2.2.2 Global Asymptotic Stability using LaSalle’s theorem

Let’s say we have V � 0, V (0) = 0, V ∈ C1, V : D → R, and V̇ (x) ≤ 0. We define an

S = {x ∈ D|V̇ (x) = 0} (2.86)

If x(t) ≡ 0 is the only solution in S, then x = 0 is asymptotically stable. If V is radially
unbounded, x = 0 is globally asymptotically stable.



54 CHAPTER 2. NONLINEAR SYSTEMS

2.2.3 Types of continuity

We have the following hierarchy

1. C0

2. differentiable

3. C1

4. ḟ(x) is bounded

5. Lipschitz continuous

6. Uniformly continuous

END OF MIDTERM RANGE



Chapter 3

Feedback Control:

March 14th, 2019

Control Lyapunov Functions for Asymptotic Stability:

Definition 3.1 (Full-State Feedback Control). Given ẋ = f(x, u), f(0, 0) = 0, with x ∈
Rn, u ∈ Rm. We seek a full-state feedback control α : Rn → Rm such that xe = 0 is
globally asymptotically stable for the closed-loop function ẋ = f

(
x, α(x)

)
.

Theorem 3.2 (Converse Lyapunov Theorem). If there exists a solution to the above prob-
lem, then there exists some continuously differentiable V : Rn → R such that:

• V (0) = 0, V (x) > 0∀x 6= 0,

• V is radially unbounded,

• V̇ (x) < 0 for each x 6= 0.

In particular, the following two statements are equivalent:

∀x 6= 0, V̇ (x) =
∂V

∂x
f
(
x, α(x)

)
< 0,

⇔∀ ,∃u = α(x) ∈ Rm such that
∂V

∂x
f(x, u) < 0.

Definition 3.3 (Control Lyapunov Function, CLF). A Control Lyapunov Function
(CLF) is a continuously differentiable function V : Rn → R satisfying:

1. V is radially unbounded.

2. inf
u∈Rm

{
∂V
∂x
· f(x, u)

}
< 0.

Remark. This is the globally asymptotic stability version of the definition. There exist other
versions, e.g. for asymptotic stability or exponential stability.

55
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Theorem 3.4. Suppose V : Rn → R is a CLF for the system Σ : ẋ = f(x, u), x ∈ Rn, u ∈
Rm. Then there exists an infinitely continuously differentiable (i.e. smooth) feedback control
α : Rn → Rm, such that the closed-loop system ẋ = f

(
x, α(s)

)
is globally asymptotically stable.

Remark. The proof of this theorem is not constructive; i.e. it gives the existence of such a
smooth feedback controller, but it does not tell us what this controller is. We will see theorems
below that rectify this.

Definition 3.5 (Control Affine System). A control affine system is a system of the
form:

ẋ = f(x) +
m∑
i=1

gi(x)ui = f(x) + g(x)u

where x ∈ Rn, ui ∈ R, u ∈ Rm, gi : Rn → Rn, g : Rn → Rn×m, with:

g(x) =
[
g1(x) · · · gm(x)

]
, u =

u1...
um


Definition 3.6 (Lie Derivative). Let V : Rn → R be a differentiable function, and let
ẋ = f(x). Then the Lie derivative of h with respect to f is defined as:

Lfh(x) ≡ ∂h

∂x
f(x).

Example. For a control affine system:

ẋ = f(x) +
m∑
i=1

gi(x)ui,

the value function V (x) evolves as:

V̇ (x) =
∂V

∂x
ẋ =

∂V

∂x

[
f(x) +

m∑
i=1

gi(x)ui

]
= LfV (x) +

m∑
i=1

Lgi(x)ui

= LfV (x) + LgV (x)u.

Proposition 3.7. The following statements are equivalent:

• For each x 6= 0:

inf
u∈Rm

LfV (x) + LgV (x)u < 0.

• For each x 6= 0, if LgV (x) = 0, then LfV (x) < 0.
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Proof. If LgV (x) = 0, then the first statement is true if and only if, for each x 6= 0:

inf
u∈Rm

LfV (x) < 0

which in turn is true if and only if the second statement is true.
If LgV (x) 6= 0, then, based on the values of LfV (x) and LgV (x), one can always choose

u such that LfV (x) + LgV (x)u is as negative as possible, i.e.:

inf
u∈Rm

LfV (x) = −∞ < 0

�

Example. Consider a control affine system Σ : ẋ = f(x) + g(x)u. If V (x) is a control affine
function for Σ, then we should choose u? as follows:

u? =

{
0, LfV < 0,

−(LgV )−1LfV, else
,

i.e. u? solves the constrained optimization problem:

Minimize uTu

subject to: LfV + LgV · u ≤ 0.

March 19th, 2019

For multiple inputs {ui|i = 1, · · · ,m}, the min-norm controller becomes:

u∗ =

{
− LfV (x)

LgV (x)LgV (x)T
LgV (x)T , LfV (x) < 0

0, else

Controlling the norm of u is very important. Controls naively designed to set ẋ to a non-
positive quantities may not have bounded norm throughout the domain of x, as the following
example indicates.

Example. Consider the system Σ : ẋ = x + x2u, where x, u ∈ R. If we want x = 0 to be
asymptotically stable, then we need:

sgn(ẋ) = sgn(x+ x2u) = −sgn(x).

In this example, this occurs if and only if:

u < −1

x
, x > 0,

u > −1

x
, x < 0.

In particular, marginal stability holds at u = 1/|x|. Observe that |u?| → ∞ as x→ 0. We say
that the system has the large control property. Intuitively, this means that the control effort at
x required to drive the system to 0 increases as |x| increases.
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As the above example illustrates, it is undesirable for a system to have the large control
property. We give a definition for the opposite property below.

Definition 3.8 (Small Control Property). A control Lyapunov function satisfies the small
control property if, for each ε > 0, there exists some δ > 0 such that for each x ∈ Bδ(0),
there exists some u(x) ∈ Rm satisfying:

1. ‖u‖ < ε.

2. V̇ (x, u) = LfV (x) + LgV (x)u < 0.

Theorem 3.9 (Sontag 1989, single input case). Suppose V is a CLF for the single-input
system ẋ = f(x)+g(x)u, x ∈ Rn, u ∈ R where f(0) = 0 and f(·), g(·) are Lipschitz continuous.
Then, if the control u(x) is chosen to be:

αs(x) =

{
−LfV (x)+

√
LfV (x)2+LgV (x)4

LgV (x)
, LgV 6= 0,

0, LgV = 0.

Then the following statements are true:

1. V̇ (x) = −
√
LfV (x)2 + LgV (x)4 < 0, for each x, with V (x) = 0 if and only if x = 0.

Moreover, x = 0 is globally asymptotically stable.

2. αs(·) is continuous for each x 6= 0.

3. αs(·) is continuous at x = 0 if V (x) satisfies the small control property.

4. αs(·) ∈ Ck for each x 6= 0 if V (·) ∈ Ck+1 and f(·), g(·) ∈ Ck.

Proof. (see Sontag’s 1989 paper) �

Example. We wish to design controls for the system:

Σ : ẋ = sinx− x3

using the following choice of control Lyapunov function:

V (x) =
1

2
x2

First, let us check that V (x) satisfies all the conditions in the definition of a control Lya-
punov function. From its definition, V ∈ C1, and V is positive definite and radially unbounded.
It remains to check whether, for each x 6= 0 such that LgV (x) = 0, we have LfV (x) < 0. Eval-
uating V̇ , we have:

V̇ =
∂V

∂x
ẋ = x(sinx− x3 + xu) = x sinx− x4 + x · u,

⇒LfV (x) = x sinx− x4,
LgV (x) = x.

Since LgV (x) = x is zero if and only if x = 0, the final condition is automatically satisfied.
Consider the following controls applied to Σ with the CLF choice V (x) = 1

2
x2.
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1. αs(x): (Sontag control)

From the definition of Sontag control, we have:

αs(x) = −
x(sinx− x3) +

√
x2(sinx− x3)2 + x4

x
, ∀x 6= 0

= −(sinx− x3)− sgn(x) ·
√

(sinx− x3)2 + x2, ∀x 6= 0,

and α3(0) = 0. (In fact, in this particular case, α3(x) is continuous at x = 0 and in C∞

at each x 6= 0.

In this case:

V̇ (x) = −
√
x2(sinx− x3)2 + x4 < 0, ∀x 6= 0,

with equality if and only if x = 0.

2. α1(x) = sinx+ x3 − x:

We have, for the closed-loop system and V̇ :

ΣCL,1 : ẋ = −x,
⇒ V̇ (x) = −x2 ≤ 0,

with equality if and only if x = 0. Thus, the closed-loop system is globally asymptotically
stable.

3. α2(x) = sinx− x:

We have, for the closed-loop system and V̇ :

ΣCL,2 : ẋ = −x3 − x,
⇒ V̇ (x) = −x4 − x2 ≤ 0,

with equality if and only if x = 0. Thus, the closed-loop system is globally asymptotically
stable.

4. α3(x) = − sinx:

We have, for the closed-loop system and V̇ :

ΣCL,3 : ẋ = −x3,
⇒ V̇ (x) = −x4 ≤ 0,

with equality if and only if x = 0. Thus, the closed-loop system is globally asymptotically
stable.
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5. α4(x) = −x:

We have, for the closed-loop system and V̇ :

ΣCL,4 : ẋ = sinx− x3 − x,
⇒ V̇ (x) = x(sinx− x)− x4 ≤ 0,

with equality if and only if x = 0. Thus, the closed-loop system is globally asymptotically
stable.

Remark. Observe that, while all five controllers render the resulting closed-loop system globally
asymptotically stable, they do so in noticeably different ways. Whereas the norm of the Sontag
control dies off when the magnitude of x becomes large, this is not true for α1(x), α2(x), or
α4(x), all of which become unbounded as x→ ±∞. This is mainly because of the inability of
these three controllers to harness the intrinsic stabilizing capabilities of the −x3 term already
present in the open-loop system (before the application of any control).

March 21th, 2019

Next, we will consider backstepping, a form of recursive feedback design pioneered by
Peter Kokotovic in the 1990s. For each i ∈ N, the i-th iteration of the algorithm does the
following:

1. Treat xi+1 as a virtual control of xi, and find a function of xi, e.g. f(xi) such that
xi+1 = f(xi) stabilizes the system.

2. Define the error state zi ≡ xi+1 − f(xi). Then, as t → ∞, we have xi+1 → f(xi) if and
only if zi → 0.

3. Rewrite the dynamics of xi, xi+1 in terms of xi, zi.

4. Define an augmented CLF Va,i(xi, z) = Vi(xi) + Vz,i(z), where Vi(xi) is an original CLF
associated with the system, and Vz,i(z) is some suitable function of z. Evaluate V̇a.

5. Try to choose an input u such that V̇a(x) ≤ 0 for each x, with equality if and only if
x = 0. If such an input u can be selected, then (xi, z) is globally asymptotically stable.
If z has been chosen carefully, this may imply that (xi, xi+1) is globally asymptotically
stable as well.

6. Rewrite Va, u in terms of the original coordinate system.

Backstepping is best illustrated through examples. Consider the two systems below.

Example. Consider the linear system:

ẋ1 = x2,

ẋ2 = u.

Use backstepping to find a suitable control u to stabilize the system.
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Remark. One choice of stabilizing control is:

u = −k1x1 − k2x2,

with corresponding closed-loop system:

Σ : ẋ =

[
0 1
−k1 −k2

]
x.

Solution :

1. We can also consider x2 as a virtual control input. If we can set:

x2 = −c1x2, c1 > 0,

this drives x1 → 0 as t → ∞. (For more complex dynamics, a Lyapunov function—e.g.
V (x) = 1

2
x2 can be used to test for stablity).

2. Next, we define an error state between the state x2 and its desired value −c1x1:

z ≡ x2 − (−c1x2)

Then, as t→∞, we have x2 → −c1x1 if and only if z → 0.

3. Our next task is to rewrite the dynamics in terms of x1 and z. This is done below:

ẋ1 = x2 = z − c1x1,
ż = ẋ2 + c1ẋ1 = c1z − c21x1 + u.

4. Next, consider the following augmented CLF Va(x, z), and its Lie derivative:

Va ≡
1

2
x2 +

1

2
z2,

⇒ V̇a ≡ xẋ+ zż = x1(z − c1x1) + z(c1z − c21x1 + u)

= −c1x21 + z(x1 + c1z − c21x1 + u)

5. To set V̇a(x, z) ≤ 0 for each x, z with equality if and only if x = z = 0, one possibility is
to choose u such that:

x1 + c1z − c21x1 + u = −c2z,
⇒u = −(c1 + c2)z + (c21 + 1)x1,

for some c2 > 0.

In this case, V̇a = −c1x21 + c2z
2 ≤ 0, with equality if and only if x1 = z = 0. Thus,

(x, z) = (0, 0) is globally asymptotically stable. Moreover, x2 = z − c1x1, so (x1, x2) is
globally asymptotically stable.



62 CHAPTER 3. FEEDBACK CONTROL:

6. In terms of the original coordinate system (x1, x2), we have:

Va(x1, x2) =
1

2
x21 +

1

2
(x2 + c1x1),

u(x1, x2) = −(1 + c1c2)x1 − (c1 + c2)x2.

Example. Consider the non-linear system:

ẋ1 = x21 + x2,

ẋ2 = u.

Use backstepping to find a suitable control u to stabilize the system.

Remark. The linearization of Σ about the origin and that of the linear system in the previous
system are the same:

ẋ =

[
0 1
0 0

]
x.

Thus, any feedback control that stabilizes the linear system in the previous example also locally
stabilizes the non-linear system in this example. However, the extra non-linaer curve ”x21” term
guarantees that the region of attraction R is bounded, and that there exists a finite escape time
for the system since it exits R.

Solution :

1. Treating x2 as a virtual control, choose:

x2 = −c1x1

for some c1 > 0, with corresponding closed-loop system:

ẋ1 = −c1x1,
ẋ2 = u.

2. Define the error state:

z ≡ x2 − (−x21 − c1x1) = x2 + x21 + c1x1

Then, as t→∞, we have x2 → −c1x1 if and only if z → 0.

3. Rewriting the dynamics in terms of x1, z, we have:

ẋ1 = x21 + x1 = x21 + z − x21 − c1x1
= z − c1x1,

ż = ẋ1 + 2x1ẋ1 + c1ẋ1 = ẋ2 + (2x1 + c1)(z − c1x1)
= u+ (2x1 + c1)(z − c1x1).
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4. Define the augmented CLF Va(x1, z) by:

Va = V1(x1) +
1

2
z2 =

1

2
x21 +

1

2
z2,

⇒ V̇a = x1ẋ1 + zż

= x1(z − c1x1) = z[u+ (2x1 + c1)(z − c1x1)].

5. To stabilize the system, choose u such that:

u+ (2x1 + c1)(z − c1x1) = −c2z,
⇒u = −c2z − (2x1 + c1)(z − c1x1),

where c2 > 0.

In this case, V̇a = −c1x21 + c2z
2 ≤ 0, with equality if and only if x1 = z = 0. Thus,

(x, z) = (0, 0) is globally asymptotically stable. Moreover, x2 = z + x21 + c1x1, so (x1, x2)
is globally asymptotically stable.

6. In terms of the original coordinate system (x1, x2), we have:

Va(x1, x2) =
1

2
x21 +

1

2
(x21 + c1x1 + x2)

2,

u(x1, x2) = −(1 + c1c2)x1 − (c1 + c2)x2.

Remark. Backstepping can be applied to robotic systems. For instance, consider the following
robotic system, where the position of a robotic arm x(t) is controlled by an input torque ξ(t).
The torque is in turn controlled by some input current u.

Σ : ẋ = f(x) + g(x)ξ,

ξ̇ = u.

April 2nd, 2019

Next, we will apply backstepping to general k-dimensional systems. To do so, we will
require the definition of ”strict feedback.” However, we first give the following assumption.
Assumption A1: Below, a system of the form:

Σ : ẋ = f(x) + g(x)u,

is said to satisfy Assumption A1 if the following statements hold:

1. f, g are locally Lipschitz, with f(0) = 0.

2. There exists some u = α(·) ∈ C1 such that α(0) = 0.
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3. There exists some V : Rn → R, where V ∈ C1 is positive definite, is radially unbounded,
and satisfies:

LfV (x) + LgV (x)α(x) ≤ −W (x)

for some positive definite W (x).

Remark. Imposing Assumption A1 on a system Σ allows us to make the following conclusions
about Σ:

1. Solutions to Σ exist, are locally unique, and are globablly bounded when t ≥ 0.

2. x = 0 is an equilibrium point of Σ that is stable in the sense of Lyapunov.

3. Since V̇ converges to 0, lim
t→∞

W (x(t)) = 0.

4. If the set of trajectories:
Z ≡ {x(·)|W (x()̇) = 0}

contains only the trajectory x(·) = 0, then x = 0 is globally asymptotically stable.

Definition 3.10 (Strict Feedback). A system Σ of the following form that satisfies Assump-
tion A1 is said to be a strict feedback system:

ẋ = f0(x) + g0(x)ξ1

ξ̇1 = f1(x, ξ1) + g0(x, ξ1)ξ2

ξ̇2 = f2(x, ξ1, ξ2) + g0(x, ξ1, ξ2)ξ3
...

ξ̇k = fk(x, ξ1, . . . , ξk) + g0(x, ξ1, . . . , ξk)u,

where f0(0) = f1(0, 0) = · · · = fk(0, 0, · · · , 0) = 0 and g0(0) = g1(0, 0) = · · · = gk(0, 0, · · · , 0) =
0.

The lemma below formally states the algorithm we applied for backstepping in previous
examples.

Lemma 3.11. Suppose the system Σ : ẋ = f(x) +g(x)u satisfies Assumption A1, and consider
the following augmentation:

Σ :

{
ẋ = f(x) + g(x)ξ,

ξ̇ = u.

1. If W (x) is positive definite, then:

Va(x, ξ) = V (x) +
1

2

(
ξ − α(x)

)2
is a control Lyapunov function for Σa.



65

2. If W (x) is positive semi-definite (but not necessarily positive definite), then there exists
some feedback ξ that renders V̇ :

Proof.

1. The proof can be completed by retracing the steps taken in the backstepping examples
above.

(a) Define the difference between the applied control ξ and ideal control α(x) as:

z ≡ ξ − α(x).

(b) Rewrite Σa, currently in terms of (x, ξ), in terms of (x, z):

ẋ = f(x) + g(x) · (z + α(x)),

ż = ξ̇ − ∂α

∂x
ẋ = u− ∂α

∂x

[
f(x) + g(x) · (z + α(x))

]
(c) Define the augmented CLF as:

V̇a =
∂V

∂x

[
f(x) + g(x)

(
z + α(x)

)]
︸ ︷︷ ︸

≡ V̇ (x)

+z

{
u− ∂α

∂x

(
f(x) + g(x)

(
z + α(x)

))
+
∂V

∂x
g(x)

}
︸ ︷︷ ︸

≡−cz, for some c>0

= V̇ (x)− cz2

≤ −W (x)− cz2

The first underbrace in the final line of the above proof follows from the definition of
V̇ (x); the second indicates that the proof is completed by choosing u such that:{

u− ∂α

∂x

(
f(x) + g(x)

(
z + α(x)

))
+
∂V

∂x
g(x)

}
= −cz

for some c > 0.

2. The proof for this part of the theorem follows similarly.

�

Example. Consider the nonlinear system:

Σ :

{
ẋ = xξ,

ξ̇ = u.

We consider the following two approaches.
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1. Choose the desired ξ as α(x) = −x2, with CLF given by:

V (x) =
1

2
x2,

⇒ V̇ (x) = xẋx(−x3) = −x4.

The augmented CLF Va(x, ξ) and corresponding control would then be:

Va(x, ξ) =
1

2
x2 +

1

2
(ξ + x2)2,

⇒u = −c(ξ + x2) + 2x · xξ − x2.

2. Choose the desired ξ as α(x) = −x2, with CLF given by:

V (x) =
1

2
x2,

⇒ V̇ (x) = xẋ = −x4.

The augmented CLF Va(x, ξ) and corresponding control would then be:

Va(x, ξ) =
1

2
x2 +

1

2
ξ2,

⇒u = −cξ − x2.

Since Va(ξ, ξ) is positive semi -definite, it becomes slightly trickier to verify whether
the origin is asymptotically stable. For this purpose, we must leverage LaSalle’s Theorem.
Observe that:

S ≡ {(x, ξ)|Va(x, ξ) = 0} = {(x, ξ)|ξ ≡ 0} = {(0, 0)},

where the last equality follows from the fact that, if ξ ≡ 0, then:

x2 = −u− cξ = −ξ̇ − cξ = 0,

so x ≡ 0.

April 4th, 2019

Sliding Mode Control:

Below, we will discuss sliding mode control and the variable structure system.
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Example. Consider the system given by ẏ = −ky, or equivalently, by the first-order differential
equation:

ẋ1 = x2,

ẋ2 = −kx2.

Our goal is to design u(x) such that (0, 0) is asymptotically stable. First, observe that by re-
arranging the above terms, we have:

dx1 = x2dt,

dx2 = −kx1dt,
⇒ −kx1dx1 = x2dx2,

⇒ Kx21 + x22 = c,

for some constant c. In particular:

• If K = 1, the resulting trajectory of the system would be a circle. The trajectories would
traverse the circle clockwisely.

• If K = −1, the resulting trajectory of the system would be a hyperbola. The trajectories
would traverse the circle in the figure INCOMPLETE; insert figure number below
shown below. INCOMPLETE; insert figure below

The central idea of sliding mode control is as follows. Consider the line:

s = ax1 + x2,

where a > 0, and let the factor K alternate between the two values +1 and −1 in the following
manner:

K = sgn(sX1).

Then, as Figure INCOMPLETE, insert figure number below shows below, the solution
”slides” to 0. This is intuitively due to the fact that the applied control pushes the system
to the sliding surface s = 0, at which point it starts oscillating about the sliding surface
(”chattering”) in a zig-zag path towards the origin.

The following example is slightly more general.

Example. Consider the system given by:

ẋ1 = x2,

ẋ2 = h(x) + g(x) · u,

where h, g are unknown, but there exists some g0 > 0 such that g(·) satisfies:

g(x1, x2) > g0 > 0

for all x1, x2 ∈ R.
Our goal is to design u(x) such that (0, 0) is asymptotically stable. Consider the two

scenarios below:
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• If u(·) is designed to drive x to s = 0, then, on S, we would have the dynamics:

ẋ = x2 = −ax1,

so x1 = 0 would be asymptotically stable.

• If x is not on s = 0, then:
Ṡ = ax2 + h(x) + g(x) · u.

In this case, if there exists some σ(x), such that g, h satisfy:

|ax2 + h(x)|
g(x)

≤ σ(x)

for each x ∈ R2, then the Lyapunov function becomes:

V (x) =
1

2
s2,

⇒ V̇ = sṡ = s[ax2 + h(x) + g(x) · u]

≤ |s|g(x) · σ(x) + sg(x)u

Now, let a function β(x) and some β0 > 0 be given such that β(x) ≥ σ(x) + β0, and set
the control as follows:

u(x) = −β(x) + sgn1(s),

where sgn1 is the modified sign function that returns 1, 0, or -1 depending on whether
the input argument is positive, zero, or negative, respectively. Then the above equation
becomes:

V̇ ≤ |s| · g(x)σ(x)− sgn(x) · g(x)β(x) = |s| · g(x)
[
σ(x)− β(x)

]
≤ −β0|s| · g(x) = −

√
2β0g(x)

√
s ≤ 0,

with equality if and only if s = 0.

Remark.

• The function σ(x) is very much application-dependent; in particular, it depends on the
functions f, g that characterize the given non-linear system.

• The main advantage of sliding mode control is its robustness, while its main disadvantages
include constant need for switching and chattering.

April 9th, 2019

Feedback Linearization:

Next, we will discuss feedback linearization, a precise method through which state feed-
back is applied to a system to make it linear. Consider the following example.
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Example. Suppose we wish to stabilize the system:

ẋ1 = x2,

ẋ2 = −a sinx1 − bx2 + cu.

using feedback linearization. To linearize the system, set u equal to:

u =
1

c
(a sinx1 + v).

Then the system becomes:

ẋ1 = x2,

ẋ2 = −bx2 + v.

Now, choose v = −k1x1 − k2x2 to stabilize the system.

Our main question is—Can be generalize this process to any non-linear system? For
some systems, this process is directly applicable; for instance, if the given system is of the form:

ẋ = Ax+Bγ(x) · [u− α(x)], (3.1)

with γ(x) 6= 0, the control u = α(x) + 1
γ(x)

v stabilizes the system.

The example below indicates that, (1) this procedure is not directly applicable to at
least some systems, and that (2) in such cases, there may exist some coordinate transform that
renders this procedure applicable.

Example. Consider the system:

ẋ1 = a sinx2,

ẋ2 = −x21 + u.

Now, suppose we wish to cast the system into the form given by (3.1). Our only choice,
shown below, fails to recast the system into a form in which there exists an input that can
simultaneously linearize all the given states:

ẋ = Ox+ I ·
([

0
u

]
−
[
−a sinx1

x21

])
In particular, the control u is unable to affect the evolution of the first coordinate, given by ẋ1,
in any way. This implies that we need a coordinate transformation which either renders the
dynamics of one coordinate linear without requiring the application of any control, or renders
the dynamics in such a form that a single input is sufficient to linearize both coordinates. To
that end, consider the effect of applying the coordinate transformation z1 = x1, z2 = a sinx2
back to the original dynamics:

ż1 = z2,

ż2 = a cosx2 · (−x21 + u)

= a cos

(
sin−1

(
1

a
z2

))
· (−z21 + u).
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The control u = x21 + 1
a cosx2

v thus stabilizes the system. We often require the coordinate
transformation to be bijective, so as to ensure that the transformed dynamics maintain a clear
correspondence to the original dynamics. In that case, we must constrain x2 to lie within the
open interval

(
−π

2
, π
2

)
.

Definition 3.12 (Feedback Linearizable). A nonlinear system of the form:

Σ : ẋ = f(x) + g(x)u,

where f, g are sufficiently smooth (depending on u), is called feedback linearizable if there
exists some control u = α(x) + β(x)v, and some diffeomorphism T such that the change of
coordinates z = T (x) and the application of u transform Σ to a linear and controllable form,
i.e. to the form:

ż = Az +Bv

where (A,B) is controllable.

INSERT FIGURE

Our next questions thus become:

• What are sufficient conditions on f, g that guarantee Σ to be feedback linearizable?

• If Σ is feedback linearizable, what choices of T, α(·), β(·) should be chosen to render the
closed-loop system both linear and controllable?

First, we consider the tracking problem below. Suppose, for some fixed ydes ∈ R, we
wish to choose a control u such that limt→∞ y = ydes.

Example. Consider the system:

ẋ1 = x2,

ẋ2 = −x21 + u,

y = x2.

This is the same system as given in a previous example, modified to include an output y that
we wish to steer to ydes. The transformation from earlier linearizes the state dynamics, at the
cost of rendering the input-output relationship (i.e. between u and y) to become non-linear.

Thus, to allow the system to have a linear input-output relationship, we require an
alternate choice of coordinate transformation. For instance, the input u = x21 + v will recast
the given system into the following form:

ẋ1 = a sinx2,

ẋ2 = v,

y = x2,

which has a linear input-output relationship.
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Now, we wish to determine the subset of non-linear systems with given outputs that are
input-output linearizable. Consider the single-input-single-output (SISO) system:

ẋ = f(x) + g(x)u,

y = h(x),

where f, g, h are sufficiently smooth. Then the dynamics of the output y are given by:

ẏ =
∂h

∂x
[f(x) + g(x)u] = Lfh+ Lgh · u

If Lgh(x) 6= 0, then the input choice u = 1
Lgh

(−LfV + v) renders the original system input-

output linearizable (in particular, with the form ẏ = v). On the other hand, if Lgh(x) = 0,
then the first-order evolution of y (characterized by ẏ) has no direct dependence on the input
u. However, it is still a function of x, which evolves under the influence of u, as dictated by the
dynamics ẋ = f(x) + g(x)u. Thus, we may be able to find an explicit dependence between the
evolution of y and the input u by consider higher-order terms in the dynamics of y. To that
end, consider the following expression for ÿ:

ÿ =
∂Lfh

∂x
[f(x) + g(x)u] = L2

fh+ LgLfhu.

Repeating the above process given for ẏ, we find that if LgLfh 6= 0, there exists a control,
namely u = 1

LgLfh
(−L2

fh+ v), that renders the input-output dynamics linear (in particular, of

the form ÿ = v). If LgLfh = 0, we must differentiate the dynamics once more:

y(3) =
∂

∂x
L2
fh(x)[f(x) + g(x)u] = L3

fh(x) + LgL
2
fh(x)u,

and the process continues.
In summary, if for some r ≥ 2, the function h(x) satisfies:

LgL
i
fh(x) ≡ 0, ∀ i = 0, 1, · · · , r − 2,

LgL
r−1
f h(x) 6= 0,

then, since:
y(r) = L

(r)
f h(x) + LgL

(r−1)
f h(x)u,

the input choice:

u =
1

LgL
(r−1)
f h(x)

[−Lrfh(x) + v]

renders the input-output relationship linear (in particular, of the form y(r) = v).

April 11th, 2019
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Definition 3.13 (Relative Degree). An n-dimensional nonlinear system:

Σ :

{
ẋ = f(x) + g(x)u,

y = h(x)

is said to have relative degree r at x0 ∈ Rn if there exists some ε > 0 such that:

1. LgL
r
fh(x) = 0, for each k ∈ [0, r − 1), x ∈ Nε(x0).

2. LgL
r−1
f h(x) 6= 0 for each x ∈ Nε(x0).

Remark. If the system above is of relative degree r, then y, ẏ, ÿ, · · · , y(r=1) are independent of
u, and:

y(r) = Lrfh(x) + LgL
(r−1)
f h(x)u.

In this case, choose:

u =
1

LgL
(r−1)
f h(x)

[
− Lrfh(x) + v

]
Consider the following examples.

Example. Consider the system:

ẋ1 = x1,

ẋ2 = x2 + u,

y = x1.

Then y(r) = x1 does not depend on u, for each r ∈ N. Thus, the relative degree of this system
is not well-defined.

Example. Consider the system:

ẋ1 = x1 + u,

ẋ2 = x2 − x1x3,
ẋ3 = x1x2,

y = x3.

Differentiating y, we have:

ẏ = ẋ3 = x1x2,

ÿ = x1ẋ2 + x2ẋ1

= x1(x2 − x1x3) + x2(x1 + u).

Since ẏ does not explicitly depend on u, but ÿ does, the system has depth 2 in D ≡ {x ∈
R3|x2 6= 0}.
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The next theorem below shows that, if a nonlinear system with output has relative
degree (exactly) equal to its dimension, it is feedback linearizable. Before doing so, however,
we require the following two facts.

Theorem 3.14 (Inverse Function Theorem). Let T : Rn → Rn be continuously differen-
tiable, with a non-singular Jacobian, i.e. with:

det

(
∂J

∂x
(x0)

)
= 0.

Then T−1 exists and is continuously differentiable. In other words, T is diffeomorphic.

Theorem 3.15 (Part of Theorem 4.2.3. in [11]). If the nonlinear system:

Σ :

{
ẋ = f(x) + g(x)u,

y = h(x)

has relative degree r at x0, then there exists a neighborhood of x0 in which:

rank

(
∂h

∂x

∂Lfh

∂x

...
∂L

(r−1)
f

∂x

)
= r.

Armed with the above facts, we can now state the following.

Theorem 3.16. An n-dimensional nonlinear system:

Σ :

{
ẋ = f(x) + g(x)u,

y = h(x)

of relative degree n is feedback linearizable.

Proof. Suppose the nonlinear system Σ, as given above, has relative degree n. Then:

y(k) = L
(k)
f h(x), k = 1, · · · , n− 1,

y(n) = L
(n)
f h(x) + LgL

(n−1)
f u.

Then, with the control input choice:

u =
1

LgL
(n−1)
f h(x)

[
− Lnfh(x) + v

]
we have y(n) = v. Now, define z = (y, ẏ, · · · , y(n−1))T ∈ Rn. Then:

ż =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0


︸ ︷︷ ︸

≡A

v +


0
0
...
0
1


︸︷︷︸
≡B

v.



74 CHAPTER 3. FEEDBACK CONTROL:

Observe that (A,B) is controllable (in fact, it is in the controllable canonical form). Moreover,
Theorem 3.15 implies that the mappping x 7→ z is diffeomorphic. Thus, any nonlinear system
of relative degree equal to its dimension is feedback linearizable. �

Our next question thus becomes—When does there exist an output h(x) of relative
degree n? To answer this question, we must leverage the following definitions from differential
geometry—manifolds, tangent space, tangent vector, tangent bundle, distribution, Lie brackets,
involute distribution.

April 16th, 2019

Differential Geometry, 2019

Prediction

Below, we begin a brief introduction of differential topology. Most of the following
definitions are reoragnized from Section 3.9 of [10].

Definition 3.17 (Smooth). Let X ⊂ Rk and Y ⊂ Rl be arbitrary subsets of Rk and Rl,
respectively. A mapping f : X → Y is said to be smooth on some open set U ⊂ X if all of its
partial derivatives, i.e.:

∂nf

∂xi1
, · · · , ∂

nf

∂xin

for each n ∈ N, exist and are continuous in U .

Theorem 3.18. If f : X → Y and g : Y → Z are smooth, then so is g ◦ f : X → Z.

Definition 3.19 (Homeomorphism, Diffeomorphism). Let X ⊂ Rk and Y ⊂ Rl be arbi-
trary subsets of Rk and Rl, respectively, and let f : X → Y be given.

1. f is called a homeomorphism if f is continuous, is bijective, and has a continuous
inverse.

2. f is called a diffeomorphism if f is continuous, is bijective, and has a smooth inverse.

Remark. A diffeomorphism is essentially a homeomorphism with a smooth inverse.

Definition 3.20 (Smooth Manifold of Dimension m).

1. A subset M ⊂ Rk is called a smooth manifold of dimension m if, for each x ∈ M ,
there exists a neighborhood W ⊂ Rk of x such that W ∩M is diffeomorphic to an open
subset of R ⊂ Rm.

2. A diffeomorphism ψ : W ∩M → U is called a system of coordinates on W ⊂M , and
its inverse ψ−1 : U → W ∩M is called a parameterization. The mappings are referred
to as coordinate maps.
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An alternative definition for smooth manifolds eschews the above construction via co-
ordinate maps for a characterization via the Inverse Function Theorem. (This is the definition
given in the class notes).

Definition 3.21 (Smooth Manifold). Let M ⊂ Rn be a non-empty subset of Rn, and fix
m ∈ {1, · · · , n}. Then M is an m-dimensional smooth manifold of Rn if, for each p ∈M , there
exists some r > 0 and smooth F : Br(p)→ Rn−m such that:

1. For each q ∈M ⊂ Br(p), we have F (q) = 0, and

2. For each q ∈M ∩Br(p):

rank

(
∂F

∂x
(q)

)
= n−m.

In other words, a manifold is the zero level set of some smooth function F whose derivative
satisfy certain rank conditions.

Some examples (and non-examples) of manifolds are given below.

Example.

1. The unit circle S1 ⊂ R2, defined by the diffeomorphism:

f(θ) = (cos θ, sin θ)

for each θ ∈ [0, 2π), is a smooth manifold of dimension 1. Equivalently, it is the zero-level
set of the function:

F (x1, x2) = x21 + x22 − 1.

2. The unit circle S on the x-y plane in R3 is the zero-level set of the function:

F (x1, x2, x3) = (x21 + x22 − 1, x3)

3. The unit sphere S2 ⊂ R3, piecewisely defined by the diffeomorphisms:

f1(x1, x2) = (x1, x2,
√

1− x21 − x22,

f2(x1, x2) = (x1, x2,−
√

1− x21 − x22,

for each (x, y) satisfying x2+y2 < 1, is a smooth manifold of dimension 2. More generally,
the n-sphere Sn ⊂ Rn+1 is given by:

Sn = {x ∈ Rn+1|‖x‖2 = 1}.

Equivalently, S2 is the zero-level set of the function:

F (x1, x2, x3) = x21 + x22 + x32 − 1.
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4. A cone in R3, given by:

f(x1, x2) = (x1, x2,
√
x21 + x22

is not a manifold of dimension 2, since there is no diffeomorphism that maps a neighbor-
hood of the vertex of the cone onto an open subset of R2.

5. Let SO(2) denote the space of orthogonal matrices in R2×2 with determinant 1, i.e.:

SO(2) ≡

{[
cos θ − sin θ
sin θ cos θ

] ∣∣∣∣∣θ ∈ [0, 2π)

}

Then SO(2) is a manifold of dimension 1. In fact, since the matrix is periodic in θ, the
set SO(2) is diffeomorphic to S1.

Next, we develop tools for performing calculus on manifolds.

Definition 3.22 (Tangent Space). Let M be an m-dimensional smooth manifold in Rn, and
fix p ∈ M . Then there exists some smooth function F : Br(p) → Rn−m satisfying the above
definition of a tangent space. The tangent space to M at p is thus defined by:

Tp(M) = N

(
∂F

∂x
(p)

)
,

where Tp denotes the tangent plane. Observe that, by definition of F , we have dim(TpM) = m.
Vectors in Tp(M) are said to be tangent vectors to M at p.

Definition 3.23 (Vector Field). Given an m-dimensional manifold M in Rn, a vector field
on M is a mapping f : M → Tp(M) that assigns each p ∈M to some tangent vector f(p) ∈M .
The vector field is said to be Ck if f is Ck.

Remark. In the context of a nonlinear system, if:

ẋ = f(x) +
k∑
i=1

gi(x)ui,

where u1, · · · , uk are scalars, then f, g1, · · · , gk are vector fields.

Definition 3.24 (Sub-manifold, Invariant sub-manifold). Suppose M is a smooth mani-
fold, and f is a locally Lipschitz vector field on M .

1. If N ⊂M is itself a manifold, it is said to be a sub-manifold of M .

2. If, for any x0 ∈M , the solution to:

ẋ = f(x), x(t0) = x0

lies in M for all t ≥ t0, then N ⊂M is called an invariant submanifold of M .
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Definition 3.25 (Lie Bracket). Given two vector fields f, g, the Lie Brackets is defined by:

[f, g](x) ≡ ∂g

∂x
f(x)− ∂f

∂x
g(x) = (Lfg − Lgf)(x)

For multiple applications of the Lie Bracket, we use the adjoint notation, given by:

adj0fg(x) ≡ g(x),

adjkfg(x) ≡ [adjk−1f g(x)g(x)], ∀k ∈ N.

In other words, adjkfg(x) = [f, [f, · · · , [f, g] · · · ]], with n− 1 fs.

Remark. The Lie Bracket of f, g can describe a ”direction of travel” not given directly by the
span of f and g. See the second example below.

Example. If f(x) = (x2,− sinx1 − x2), g(x) = (0, x1), then:

[f, g](x) =

[
0 0
1 0

] [
x2

− sinx1 − x2

]
−
[

0 1
− cosx1 −1

] [
0
x1

]
=

[
−x1

x1 + x2

]
.

Example. Consider the n-dimensional linear system ẋ = Ax + bu, where A ∈ Rn×n, b ∈ Rn.
Then:

[f, g] = −Ab,
[f, [f, g]] = A2b,

...

[f, [f · · · , [f, g] · · · ]] = (−1)nAnb.

Definition 3.26 (Tangent Bundle). The tangent bundle TM of a manifold M is the union
of its tangent spaces, i.e.:

TM ≡
⋃
p∈M

Tp(M).

Definition 3.27 (Distribution). Given a manifold M , a distribution is the span of a collec-
tion of vector fields on M , i.e. given vector fields f1, · · · , fk, defined with respect to a manifold
M , the distribution associated with f1, · · · , fk is defined by:

∆(x) = span{f1(x), · · · , fk(x)}

Observe that, at each x, the distribution ∆(x) is a subspace, with dimension given by:

dim
(
∆(x)

)
= rank

( [
f1(x) · · · fk(x)

] )
Definition 3.28 (Non-singular Distribution, Involute Distribution). Let ∆ be a dis-
tribution on some manifold M .
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1. ∆ is called non-singular if dim
(
∆(x)

)
is independent of x.

2. ∆ is called involutive if, for each f, g ∈ ∆ and x ∈M , we have:

[f, g] ∈ ∆.

Example. If f1(x) = (2x2, 1, 0), f2(x) = (1, 0, x2), and ∆(x) ≡ span{f1(x), f2(x)}, then:

dim
(
∆(x)

)
= rank

2x2 1
1 0
0 x2

 = 2, ∀x2 ∈ R,

[f, g] =

0 0 0
0 0 0
0 1 0

2x2
1
0

+

0 2 0
0 0 0
0 0 0

 1
0
x2

 =

0
0
1


In fact, Σ : ẋ = f(x) is feedback linearizable if and only if the state-dependent matrix:[

g(x) adfg(x) · · · adn−1f g(x)
]

is non-singular with rank m for each n, and its range space:

∆(x) ≡ R
( [
g(x) adfg(x) · · · adn−1f g(x)

] )
is involutive.

April 18th, 2019

Proposition 3.29. The control affine system:

ẋ = f(x) + g(x)u,

y = h(x),

has relative degree n at x0 ∈ Rn, i.e. Lgh
i(x0) = 0, ∀ i = 0, · · · , n − 2, and Lgh

n−1(x0) 6= 0, if
and only if any of the following two statements are true:

Lgh(x0) = Ladfgh(x0) = · · · = Ladn−2
f gh(x0) = 0, Ladn−1

f gh(x0) 6= 0, (3.2)

⇐⇒∂h

∂x

∣∣∣∣∣
x0

[
g(x) adfg(x0) · · · adn−2f g(x0)

]
= 0 (3.3)

The equivalence of (3.2) and (3.3) is left as an exercise to the reader.

Definition 3.30 (Completely Integrable). A non-singular k-dimensional distribution:

∆(x) = span{f1(x), · · · , fk(x)}, ∀x ∈ Rn
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is called completely integrable if there exist n− k functions φ1(x), · · · , φn−k(x), such that:

∂φi
∂x

fj(x) = 0, ∀ i = 1, · · · , n− k, j = 1, · · · , k, and :{
∂φi
∂x

∣∣∣∣∣i = 1, · · · , k

}
is linearly independent.

Theorem 3.31 (Frobenius). A non-singular distribution is completely integrable if and only
if it is involutive.

Proof. (see pgs. 360-362 of Sastry, Shankar, ”Nonlinear Systems” [10]). �

Theorem 3.32 (Feedback Linearization). An affine control system Σ : ẋ = f(x) + g(x)u is
feedback linearizable, for each x ∈ Rn, if and only if the following conditions both hold:

1. rank
( [
g(x) adfg(x) · · · adn−1f g(x)

] )
= n for each x ∈ Rn.

2. ∆ = span{g(x), adfg(x), · · · , adn−2f g(x)} is involutive.

Proof.
”⇒: ” (Omitted)

⇐: ” Below, we will show that the above two conditions imply the equalities in (3.2).
Observe the first condition implies that ∆(x) is non-singular with degree n − 1, while the
second indicates that ∆(x) is involutive. By Frobenius’ Theorem, ∆ is completely integrable.
Taking k = n− 1 in the definition of complete integrability, we find that there exists some h(x)
such that:

∂h

∂x
adifg(x) = 0, j = 1, · · · , n− 1,

∂h

∂x
= 0.

It remains to show that Ladn−1
f gh(x0) 6= 0. Suppose by contradiction that:

0 = Ladn−1
f gh(x0) =

∂h

∂x

∣∣∣∣∣
x0

adn−1f g(x0),

⇒ ∂h

∂x

∣∣∣∣∣
x0

[
g(x) adfg(x0) · · · adn−1f g(x0)

]
= 0,

⇒ ∂h

∂x

∣∣∣∣∣
x0

= 0,

a contradiction. Observe that the final equality follows from the first statement in the theorem,
i.e. the assertion that rank

( [
g(x) adfg(x) · · · adn−1f g(x)

] )
= n for each x ∈ Rn. We have

thus established that (3.2) holds, so Σ has relative degree n. This in turn implies that Σ is
feedback linearizable. �
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MIMO Feedback Linearization

Definition 3.33 (Square Affine System). A square affine system is a control affine
system where the control u and output y have the same number of inputs and outputs, i.e. it
has the form:

ẋ = f(x) + g(x)u = f(x) +
m∑
i=1

gi(x)ui,

y = h(x) = (h1, · · · , hm)(x),

for some m ∈ N.

We wish to extend the concept of relative degree from single-input-single-output systems
to square affine systems of arbitrary dimensions. Intuitively, this can be done by taking each
output hi (for each i ∈ 1, · · · , n), and examining the lowest time derivative degree ri at which

h
(ri)
i explicitly depends on some uj. Moreover, we want each of the inputs uj to be of use. Thus,

the dependence of his to be spread out among these ujs, i.e. we cannot have a square affine
system each output h1, · · · , hm explicitly depends on u1, but no output explicitly depends on
u2, · · · , um. This intuition is translated into precise mathematical language below.

Definition 3.34 (Vector Relative Degree). A square affine system Σ is said to have vec-
tor relative degree r = (r1, · · · rm) ∈ Rm at x0 ∈ Rn if both of the following conditions
hold. Observe that i, j, k denote indices for the input component, output component, and degree
respectively:

1. LgjL
k
fhi(x) = 0, for each i, j = 1, · · · ,m, k = 1, · · · , ri − 1,

2. rank
([
LgjL

ri−1
f hi(x0)

]
ij

)
= m,

where
[
LgjL

ri−1
f hi(x0)

]
ij

is called the decoupling matrix.

Remark. The decoupling matrix directly associates the control signals u1, · · · , um to the deriva-
tives of the outputs, i.e. to h

(r1)
1 , h

(rm)
m , as shown below:

h
(ri)
i = Lrif hi(x) +

m∑
j=1

LgjL
ri−1
f hi(x)uj, ∀ i = 1, · · · ,m,

⇒


L
(r1)
f h1(x)

...

L
(rm)
f hm(x)

+ A(x)u.

Thus, if we want h
(ri)
i = vi for some set of inputs {vi|i = 1, · · · ,m}, set:

u = A(x)−1

−

L
(r1)
f h1(x)

...

L
(rm)
f hm(x)

+

v1...
vm



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April 23th, 2019

Feedback Linearization—Standard Procedure:

A standard procedure for feedback linearization can thus be given as follows:

1. Construct {g, adfg, · · · , adn−1f g}.

2. Check that {g, adfg, · · · , adn−1f g} has full rank (i.e. rank = n), and ∆ = span{g(x), · · · , adn−2f g(x)}
is involutable. If this holds in some neighborhood of the equilibrium point, the system
is locally feedback linearizable. If this holds everywhere in the state space, the system is
globally feedback linearizable.

3. Find an output h(x) with relative degree n.

4. Construct appropriate input and state transformations based on the definition of h(x).

The following example shows these four steps in action.

Example. (Feedback Linearization Example) Consider the 2-dimensional non-linear system:

Σ : ẋ =

[
a sinx2
−x21

]
+

[
0
1

]
u.

Below, we apply the four steps described above.

1. First, find g and adfg:

g =

[
0
1

]
,

adfg = [f, g] =
∂g

∂x
f − ∂f

∂x
g

= −
[

0 a cosx2
−2x1 0

] [
0
1

]
=

[
a cosx2

0

]
2. We wish to find the rank of

[
g adfg

]
and the involutability of g:[

g adfg
]

=

[
0 −a cosx2
1 0

]
, ∀x2 ∈

(
−π

2
,
π

2

)
,

dim
(
span{g}

)
= 1, ∀x2 ∈ R.

3. Next, we wish to find h(x) such that h(x) has relative degree 2, i.e. Lgh(x) = 0 and
LgLfh(x) 6= 0. For simplicity, we will use the following abbreviations:

hi ≡
∂h

∂xi
, ∀ i = 1, 2,

hi,j ≡
∂2h

∂xixj
, ∀ i, j = 1, 2,
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We thus have:

0 = Lfh(x) =
[
h1 h2

] [0
1

]
= 0,

0 6= LgLfh(x) = Lg

([
h1 0

] [a sinx2
−x21

])
= Lg (a sinx2h1)

=
[
∂
∂x1

(a sinx2h1)
∂
∂x2

(a sinx2h1)
] [a sinx2
−x21

]
=
[
∂
∂x1

(a sinx2h11) a cosx2h1 + a sinx2h22
] [a sinx2
−x21

]
= a2 sin2 x2h11 − ax21 cosx2h1 − ax21 sinx2h12

In particular, the first constraint tells us that h(x) = h(x1, x2) is independent of x2, while
the second constraint imposes additional restrictions. A possible choice is h(x) = x1.

4. Rewrite the dynamics using h and ḣ, and find the corresponding input and state trans-
formations.

The state transformation is given by:

y = x1,

ẏ = a sinx2,

ÿ = −a(x21 + u) cosx2,

while the input transformation is given by:

u = −x21 −
v

a cosx2

Input-Output Linearization, SISO Case:
Below, we motivate the definition of the zero dynamics of a system using the following

example.

Example. (Input-Output Linearization Example 1, SISO Case) Consider the following
system:

Σ1 :

[
ẋ1
ẋ2

]
=

[
x32 + u
−u

]
,

y = x1.

Our goal is as follows—For a given desired output yd(·), choose an input u(·) such that e ≡
y − yd → 0 as t→∞, while keeping the state vector x bounded.

To examine what inputs u allow e→ 0, we must evaluate the dynamics of e:

ė = ẏ − ẏd(t) = x32 − ẏd(t) + u.
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This indicates that we should choose u ≡ −x32 − ẏd(t)− e. In this case, the internal dynamics
become:

ẋ2 = x32 + e− ẏd(t).

Suppose ẏd(t) is bounded, i.e. there exists some D > 0 such that |e(t) − ẏd(t)| ≤ D. Then,
in this case, the above choice of u renders x2 unbounded, which in turn implies that u itself
becomes unbounded. This is because it can be shown that, if |x2| > 3

√
D, we have sign(ẋ2) =

sign(x2). Thus, |x2| → ∞, and so |u| = | − x32 + ẏd(t)− e| → ∞.
In summary, the above analysis shows that no bounded input can reduce the error e to

0.

We wish to find an input that keeps the internal dynamics stable. For linear systems,
this is denoted by the locations of the zeros in the system’s transfer function. Inspired by this
observation, we define the zero dynamics of the system to be the state dynamics corresponding
to an input choice that keeps the output identically zero.

Proposition 3.35. Given a nonlinear system Σ, the local (asymptotic) stability of the zero
dynamics implies local (asymptotic) stability of the internal dynamics.

Essentially, the above proposition tells us that, if the internal dynamics are too difficult
to analyze, try to analyze the zero dynamics instead.

Example. (Input-Output Linearization Example 2, SISO Case) Consider the following
system:

Σ1 :

[
ẋ1
ẋ2

]
=

[
x32 + u
u

]
,

y = x1.

In this case, the zero dynamics are given by:

x1 = 0,

ẋ1 = x32 + u = 0.

Thus, to drive y ≡ x1 → 0, we must choose u = x32. As a result, the dynamics for x2 become:

ẋ2 = −u = −x32,

which drives x2 → 0 asymptotically. Since the zero dynamics of the system is stable, so are the
internal dynamics (at least locally).

Input-Output Linearization, MIMO Case:
A standard procedure for feedback linearization can thus be given as follows:

1. Differentiate y until u appears.

2. One control choice is to choose u to cancel non-linearities in the system, thus guaranteeing
input/output stability of the resulting linear system.
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3. Study the stability of the internal dynamics of the system, through studying the zero
dynamics.

In particular, consider the following MIMO system of vector degree (r1, · · · , rm):

Σ :

y
(r1)
1
...

y
(rm)
m

 =

 L
r1−1
f h1(x)

...
Lrm−1f hm(x)

+ A(x)u

Thus, the following choice of input will stabilize the system:

u = A−1(x) ·

−
 L

r1−1
f h1(x)

...
Lrm−1f hm(x)

+ u


The feedback linearizability of Σ depends on (r1, · · · , rm), as the following proposition demon-
strates.

Proposition 3.36. Suppose a multiple-input-multiple-output non-linear system has vector rel-
ative degree (r1, · · · , rm). Then:

1. If r1 + · · ·+ rm = n, the system is feedback linearizable.

2. If r1 + · · ·+ rm < n, the system may still be input-output linearizable.

To find the zero dynamics of a MIMO system, we must find the control u that satisfies:

0 ≡ y =

[
y
(r1)
1

... y
(rm)
m

]
=

[
L
(r1)
f h1

... L
(rm)
f hm

]
+ A(x) · u

This is given by u?, as defined below, with corresponding dynamics:

u? ≡ −A(x)−1

[
L
(r1)
f h1

L
(rm)
f hm

]
,

f ?(x) = f(x) + g(x)u?.

April 25th, 2019

Example. Consider the system:

Σ :

[
ẋ1
ẋ2

]
=

[
x2 + u
−u

]
=

[
0 1
0 0

]
︸ ︷︷ ︸
≡A

[
1
−1

]
︸ ︷︷ ︸
≡B

u,

y = x1 =
[
1 0

]︸ ︷︷ ︸
≡C

x.

Design a controller u that drives y → yd as e→ 0.
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Solution :

Define the error e ≡ y − yd, with corresponding error dynamics:

ė = ẏ − ẏd = x2 + u− ẏd.

In this case, if we choose u = −e−x2+ ẏd, we have error and internal dynamics given as follows:

ė = −e,
ẋ2 = x2 + e− ẏd.

We claim that the zero dynamics of the given linear system are dictated by the zero
locations. This can be verified by examining the input-output transfer function of the system,
given by:

G(s) = C(sI − A)−1B

=
[
1 0

] [s −1
0 s

]−1 [
1
−1

]
=
s− 1

s2

Thus, the system has a zero s = +1 in the right-half complex plane. This indicates that the zero
dynamics are unstable for this example. This agrees with the fact that the internal dynamics
is intuitively unstable, in the sense that:

ẋ2 = x2 + (e− ẏd)

asymptotically approaches the unstable linear system ẋ2 = x2 as t→∞.

�
Below, we give a more general example of the zero dynamics of a linear system.

Example. Consider a linear system with input-output transfer function:

G(s) =
s2 + b1s+ b0

s4 + a3s3 + a2s2 + a1s+ a0

Analyze the zero dynamics of the system.

Solution :

The given system can be rendered into a controllable canonical form:

ẋ =


1 0 0 0
0 1 0 0
0 0 1 0
−a3 −a2 −a1 −a0

+


0
0
0
1

u,
y =

[
b0 b1 1 0

]
x.
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From the definition of the output y, we have:

y = Cx,

ẏ = CAx+ CBu = CAx,

ÿ = CA2x+ CABu,

⇐⇒
[
ẏ
ÿ

] [
0 1
0 0

] [
y
ẏ

]
+

[
0

CAB

]
u,

where we observe that CB = 0, CAB 6= 0. The system thus has relative degree 2.
Now, let us consider the zero dynamics of the system. Suppose y = ẏ = 0. Then:

0 = y = b0x1 + b1x2 + b2x3,

⇒ ẋ2 = x3 = −b0x1 − b1x2.

In other words, the zero dynamics are given by:[
ẋ1
ẋ2

]
=

[
1 0
−b0 −b1

] [
x1
x2

]
,

with characteristic polynomial given by s2 + b1s+ b0.

Example. Next, consider the example of a planar quadrotor, given by:

Σ : mÿ = −F sin θ,

mz̈ = F cos θ −mg,
Jθ̈ = M.

To render the above dynamics into the form of a first-order differential equation, define the
system state x = (y, z, θ, ẏ, ż, θ̇). Then:

x1
x2
x3
x4
x5
x6

 =


x4
x5
x6
0
−g
0

+


0 0
0 0
0 0

− 1
m

sinx3 0
1
m

cosx3 0
0 1/5


[
F
M

]
.

If we choose the output to be y1 ≡ (x1, x2) ≡ h(x)→ 0, then:

ẏ1 = Lfh(x) + Lgh(x)u =

[
x3
x4

]
,

⇒ ÿ1 = L2
fh(x) + LgLfh(x)u =

[
0
−g

]
+

[
− 1
m

sinx1 0
1
m

sinx1 0

]
u.

Observe that r1 = r2 = 2, but the vector relative degree of the system is not well-defined,
since LgLfh(x) is not invertible. This implies that this direct feedback scheme does not work.
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Specifically, since u = (F,M), the second column of zeros in LgLfh(x) implies that applying
M has no effect on the dynamics.

To allow M to take effect, we instead make use of dynamic feedback linearization, i.e. a
feedback controller that has dynamics of its own:

u = α(x, ξ) + β(x, ξ)u,

ξ̇ = r(x, ξ) + δ(x, ξ)v.

The system dynamics thus becomes:

ẋ = f(x) + g(x) ·
[
ξ
M

]
,

ξ̇ =

[
0 1
0 0

]
ξ +

[
0 0
1 0

] [
F
M

]

April 30th, 2019

Example. Use sliding mode control to stabilize the following system:

ẋ1 = x2 + sinx1,

ẋ2 = θ1x
2
1 + (1 + θ2)u

Solution:
Identify h(x) = θ1x

2
1 and g(x) = 1 + θ2; then ẋ2 = h(x) + g(x)u, as in the case of normal

sliding mode control. The presence of the additional term ”sinx1” in the expression for ẋ1
implies that the expression for s would need to be adjusted slightly to allow trajectories on the
sliding surface s = 0 to move towards the origin asymptotically. For instance, we can choose s
such that, on s = 0, we have ẋ1 = x2 + sinx1 = −ax1 for some a > 0. This could be done, for
instance, by defining:

s = sinx1 + ax2 + x2

In this case, we have:
ṡ = (cosx1 + a)(x2 + sinx1) + h(x).

The standard operating procedure for sliding mode control then implies that we must choose
some σ(x) such that:

|(cosx1 + a)(x2 + sinx1) + h(x)|
g(x)

≤ σ(x).
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