Stochastic Processes

Probability Space: A measure space(Ω ,A,P) is a probability space if P(Ω)=1. In this case, P is called a probability measure.

Expected Value of Random Variable X on Probability Space Ω where X is any Measurable Function:

$$\mathsf{E}[X] = \int\limits_{\Omega} X(\omega) \mathsf{P}(d\omega)$$

Integral is for $\omega \in \Omega$

Discrete Time Stochastic Process : A discrete time stochastic process is a sequence of random variables: $\{X_n : n \in Z\}$ where the index n is conventionally interpreted as time

Discrete Time Markov Chain : A discrete time stochastic process is a Markov Chain iff $P(X_{n+1} = j | X_n = i, X_{n-1} = i - 1, ..., X_{n-d} = i - d) = P(X_{n+1} = j | X_n = i)$ for all $n \in \mathbb{Z}, d \ge 0$

Continuous Time Stochastic Process : A continuous time stochastic process is a family of random variables: $\{X(t) : t \in R\}$ where the index t is conventionally interpreted as time. An alternate viewpoint is that the entire function $(t \mapsto X(t))$ is a random function of time. This is called the **sample path**.

Poisson Process : A Poisson point process is a counting process that has a parameter of λ , often called the rate or intensity.

Properties 1) N(0)=0;

2) It has independent increments; and the number of events (or points) in any interval of length t is a Poisson random variable with parameter (or mean) 3) It has probability density function $\Pr\{N(t) = n\} = \frac{(\lambda t)^n}{n!}e^{-\lambda t}$