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1 Introduction

In this expository note, we discuss the classical Glivenko-Cantelli theorem and use
it to motivate the idea of VC dimension. We prove some properties of VC dimension
and relate it to other notions of size, such as cardinality and covering/packing num-
bers. Finally, we prove general Glivenko-Cantelli type results using the VC dimension
machinery, providing effective rates for convergence.
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2 The Glivenko-Cantelli Theorem

2.1 Motivation

In the most general statistical setup, we have some unknown probability distribu-
tion µ, and we try to estimate properties of it by taking independent, identically
distributed samples X1, X2, . . . , Xn with distribution µ (written Xi ∼ µ). The gen-
eral hope is that as we take enough samples (n→∞), we can recover properties of
the distribution µ. For example, the Strong Law of Large Numbers says that, with
probability 1, the sample average of our data converges to the true average of the
distribution µ:

Pµ

(
lim
n→∞

1

n

n∑
i=1

Xi = Eµ[X1]

)
= 1.

This theorem holds for any functions f(Xi) of our data, as well, provided that
E[|f(X1)|] <∞.

Intuitively, the hope and general assumption of statistics is that it is possible
to estimate any property of the distribution µ consistently. A distribution µ on R
specifies a cumulative distribution function (CDF)

Fµ(t) := Pµ(X ≤ t).

The CDF uniquely specifies the distribution it arises from, as well. We have µ((a, b]) =
Fµ(b)− Fµ(a), which determines the value of µ by the Carathéodory outer measure
construction (see chapter 1 of [Fol13]). So if we can consistently estimate Fµ with
the data X1, . . . , Xn as n → ∞, we should be able to estimate any property of the
distribution µ. The Glivenko-Cantelli theorem says that this estimation of the entire
distribution is indeed possible.

2.2 Statement and proof of the Glivenko-Cantelli theorem

First, we mention what our estimator of Fµ should be.

Definition 2.1. The sample or empirical CDF is

Fµn(t) :=
1

n

n∑
i=1

1(−∞,t](Xi).

This is a nondecreasing, right continuous function which jumps up by 1/n when-
ever we hit any of the values Xi.
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Example 2.1. If µ is the uniform distribution on [0, 1], Fµ(t) = t for t ∈ [0, 1]. Here
is a comparison of what the empirical CDF Fµn may look like compared to Fµ for
n = 10 and n = 100 samples.1

The next order of business is to specify what type of functional convergence we
will be referring to when we discuss consistency. Amazingly, the convergence is
uniform, which is essentially the most powerful form of convergence one can hope
for.

Theorem 2.1 (Glivenko-Cantelli). Let µ be a distribution on R, let X1, X2, . . .
iid∼ µ,

and let Fµn = 1
n

∑n
i=1 1(−∞,t](Xi). Then, as n→∞,

sup
t∈R
|Fµn(t)− Fµ(t)| a.s.−−→ 0.

Here is an elementary proof of the theorem. First, we prove a deterministic
lemma.

Lemma 2.1. Let Fn and F be uniformly bounded, nondecreasing, right-continuous
functions. If

(a) Fn(t)→ F (t) for each rational t,

(b) Fn(t)→ F (t) for each atom of F (points where F (t) 6= lims↑t F (s)),

1Picture taken from chapter 4 of [Wai19].
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then supt∈R |Fn(t)− F (t)| n→∞−−−→ 0.

Here is the proof of the lemma in the case where F has no atoms; the general
case is the same, but constructing the ε-net in the proof is a bit more notationally
messy, so we omit it.

Proof. Let ε > 0. There exists a finite net T = {t1 < · · · < t`} of rationals and atoms
of F such that for any t ∈ R, there is a t′ ∈ T with t′ > t and F (t′)−F (t) < ε. In the
case where there are no atoms of F , we can just set tj = sup{x ∈ R : F (x) ≤ j/N}
for 1 ≤ j ≤ N .

Now, for any t ∈ R, letting tj ∈ T be the smallest element of T which is ≥ t, we
have

|Fn(t)− F (t)| ≤

{
Fn(tj)− F (tj−1) if Fn(t) ≥ F (t)

F (tj)− Fn(tj−1) if Fn(t) < F (t)

≤

{
|Fn(tj)− F (tj)|+ |F (tj)− F (tj−1)| if Fn(t) ≥ F (t)

|F (tj)− F (tj−1)|+ |F (tj−1)− Fn(tj−1)| if Fn(t) < F (t)

Picking n large enough such that |Fn(t′)− F (t′)| < ε for all t′ ∈ T ,

< 2ε.

So, for large enough n, supt∈R |Fn(t) − F (t)| < 2ε. Letting ε ↓ 0 completes the
proof.

Now, here is the proof of the Glivenko-Cantelli theorem.

Proof. For a fixed t, the Strong Law of Large Numbers says that

1

n

n∑
i=1

1(−∞,t](Xi)
a.s.−−→ Eµ[1(−∞,t](Xi)] = Pµ(X1 ≤ t).

That is, Fµn(t)→ Fµ(t) with probability 1. So if we let S = Q ∪ {atoms of Fµ}, the
convergence holds with probability 1 for each of the countably many points in S, so

Pµ(Fµn(t)→ Fµ(t) ∀t ∈ S) = 1.

Thus, by the lemma,

Pµ
(

sup
t∈R
|Fµn(t)− Fµ(t)| n→∞−−−→ 0

)
= 1.
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There are two important things to note about this proof:

• The proof does not give any information about the rate of convergence of Fµn
to Fµ.

• The proof relies heavily on the linear ordering of R, so it is hard to generalize
to, say, Rn.

The concept of VC dimension will fix both of these issues.

3 VC Dimension

To generalize the Glivenko-Cantelli theorem to more settings, let’s rephrase the the-
orem in the following way:

Theorem 3.1 (Glivenko-Cantelli). Let I = {(−∞, a] : a ∈ R}. Then, as n→∞,

sup
S∈I

∣∣∣∣∣ 1n
n∑
i=1

1S(Xi)− Pµ(S)

∣∣∣∣∣ a.s.−−→ 0.

We want to be able to look at sets S other than intervals. Here is an example of
a class of measurable sets where this won’t work, however.

Example 3.1. Let F be the collection of finite subsets of R, and let µ be some
distribution with no atoms (e.g. the uniform distribution on [0, 1]). Then, if we let
Sn = {X1, . . . , Xn}, we get∣∣∣∣∣ 1n

n∑
i=1

1Sn(Xi)− Pµ(Sn)

∣∣∣∣∣ = |1− 0| = 1

for each n. So in this situation, we have

sup
S∈F

∣∣∣∣∣ 1n
n∑
i=1

1S(Xi)− Pµ(S)

∣∣∣∣∣ = 1

for every n, and the convergence to 0 does not occur.

This example shows that some collections of sets might be too large for Glivenko-
Cantelli results to hold. If we include even more sets, we get the following extreme
example.
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Example 3.2. Let F be the Borel σ-field on R. Then the Glivenko-Cantelli result
is asking for

‖µn − µ‖TV
a.s.−−→ 0,

where µn = 1
n

∑n
i=1 δXi

is the empirical distribution measure.

The solution to this issue, introduced by Vapnik and Chervonenkis, is to provide a
combinatorial “dimension” for the class F of sets. This concept will help us determine
what kinds of sets enjoy Glivenko-Cantelli type results and how fast the convergence
occurs.

The VC dimension is the largest number of points where F can distinguish all
possible subsets of the points.

Example 3.3. Let I = {(−∞, a] : a ∈ R}, as before. If T = {0}, then (−∞,−1] ∩
T = ∅ and (−∞, 1] ∩ T = T , so I shatters T .

On the other hand, for any two point set T = {x, y} with x < y, I cannot pick
out the set {y} ⊆ T . So I cannot shatter any set with at least two points, and we
get vc(I) = 1.

Example 3.4. Let F = {(a, b) : a, b ∈ R} be the collection of finite length open
intervals. F can shatter T = {0, 1}:

(−1, 0)∩T = ∅, (−1/2, 1/2)∩T = {0}, (1/2, 3/2)∩T = {1}, (−1, 2)∩T = T.

However, F cannot shatter any set containing at least three points. If x < y < z,
then F cannot pick out {x, z}. So vc(F) = 2.

Example 3.5. Let F be the set of (axis parallel) rectangles in R2. Then vc(F) = 4.
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Definition 3.1. Let F be a collection of subsets of some space Ω. We say that F 
shatters a set T if for every U ⊆ T , there is an S ∈ F with S ∩ T = U . The VC 
dimension vc(F) is the maximum cardinality of a set that F shatters.



Here is how F can shatter a four point set:

The example from before which did not satisfy the Glivenko-Cantelli theorem has
infinite VC-dimension:

Example 3.6. Let F be the set of finite subsets of R. Then F shatters any finite
set T because for any J ⊆ T , J ∈ F , and J ∩ T = J . So vc(F) is infinite.

4 Uses of VC Dimension

In the first half of this section, we prove some relationships between VC dimensions
and other notions of size. In the second half, we use these relationships to provide a
general proof of the Glivenko-Cantelli theorem for a number of classes F .

4.1 Relating VC dimension to other notions of size

We begin this section by discussing the case where F is finite. If F is a finite
collection of subsets of Ω = {x1, . . . , xn}, then there is an interesting relationship
between vc(F) and |F|. We first have |F| ≥ 2vc(F) because the right hand side is the
size of the collection of elements of F intersected with A, where A is any maximal
shattered set.

We can actually prove an upper bound, as well.
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Lemma 4.1 (Pajor). Let F ⊆ Ω = {x1, . . . , xn}, and denote SH(F) = {A ⊆ Ω :
A is shattered by F} (which includes ∅). Then

|F| ≤ | SH(F)|.

Proof. Proceed by induction on |Ω|. When |Ω| = 1, we are done because the right side
includes the empty set. Now assume the lemma holds for |Ω| = n. For |Ω| = n + 1,
write Ω = Ω0 ∪ {x0}, where |Ω0| = n. We can split F into

F+ = {S ∈ F : x0 ∈ S}, F− = {S ∈ F : x0 /∈ S}.

By the inductive hypothesis,

|F| = |F+|+ |F−| ≤ | SH(F+)|+ | SH(F−)|.

It now suffices to show that | SH(F)| ≥ | SH(F+)| + | SH(F−)|. First, if A is
shattered by one of F+,F−, then it is shattered by F . And if A is shattered by both
F+,F−, then A ∪ {x0} is shattered by F but not by either of F+,F−. This proves
the desired inequality.

One way of stating the condition that F shatters {x1, . . . , xn} is that

|{S ∩ {x1, . . . , xn} : S ∈ F}| = 2n.

Using Pajor’s theorem, we can get a bound on the number of pieces we get if we try
to shatter a large set using F .

Lemma 4.2 (Sauer-Shelah). Let x1, . . . , xn ∈ Ω, and let F be a class of subsets of
Ω. Then

|{S ∩ {x1, . . . , xn} : S ∈ F}| ≤
vc(F)∑
k=0

(
n

k

)
≤
(

en

vc(F)

)vc(F)

.

Proof. Let the collection in the left hand side be G. By Pajor’s lemma, we have

|G| ≤ |{A ⊆ {x1, . . . , xn} : A is shattered by G}|.

If A is shattered by G, then it is shattered by F , so the cardinality of any such A is
bounded: |A| ≤ vc(F). So we get

|G| ≤ |{A ⊆ {x1, . . . , xn} : |A| ≤ vc(F)| =
vc(F)∑
k=0

(
n

k

)
,
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proving the first inequality.
The second inequality follows from the following computation involving the bi-

nomial theorem: If d ≤ n, then(
d

n

)d d∑
k=0

(
n

k

)
≤

d∑
k=0

(
n

k

)(
d

n

)k
=

(
1 +

d

n

)n
≤ ed.

The following theorem is our destination for this section. It relates the VC di-
mension to another notion of size, the covering number.

Theorem 4.1 (Dudley). Let µ be a distribution on Ω, and let F be a collection of
subsets of Ω. There is a universal constant K such that

N(F , ‖ · ‖L2(µ), ε) ≤
(
K

ε

)K vc(F)

.

for all ε < 1.

Here, the metric on F is ρ(A,B) := ‖1A − 1B‖L2(µ).

Remark 4.1. This bound is independent of the distribution µ, so we could take the
supremum of the left hand side over all probability distributions µ.

Also compare this bound on the covering number to the covering number of the
unit ball in Rd: (1/ε)d. This gives a bit more justification of why we think of vc(F)
as a measure of dimension.

The idea is as follows. Covering and packing numbers are equivalent, so we can
just focus on packing numbers. By the Strong Law of Large Numbers, ‖1A−1B‖L2(µ)

can be approximated by ‖1A− 1B‖L2(µr) for sufficiently large r. Since µr is discrete,
we have a packing in L2(µr), then all of the sets belonging to the packing must have
distinct intersections with {X1, . . . , Xr} (as long as ε < 1/r). Thus, we can upper
bound the packing number by counting the number of these intersections, which will
be accomplished via Sauer-Shelah.

The following lemma makes precise what value of r we can use.

Lemma 4.3 (Probabilistic extraction). Let S1, . . . , Sm be subsets of Ω such that
‖1Si
−1Sj

‖L2(µ) > ε for all i 6= j. Then there exist r ≤ cε−4 logm points x1, . . . , xr ∈
Ω such that

‖1Si
− 1Sj

‖L2(µx) > ε/2

for all i 6= j. Here, µx := 1
r

∑r
k=1 δxk is the empirical distribution for these points,

and c is a universal constant.
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Proof. Let X1, . . . , Xr
iid∼ µ, and let µr be the empirical measure. Then

P
(
‖1Si

− 1Sj
‖2L2(µr)

≤ ε2

4

)
≤ P

(
‖1Si

− 1Sj
‖2L2(µr)

≤ ‖1Si
− 1Sj

‖2L2(µ) −
3ε2

4

)
‖1Si
−1Sj

‖2L2(µ) is the expectation of ‖1Si
−1Sj

‖2L2(µr)
, so using the Azuma-Hoeffding

inequality,

≤ e−rε
4/15.

Using a union bound over all i 6= j, we get

P
(
‖1Si

− 1Sj
‖L2(µr) >

ε

2
∀i 6= j

)
≥ 1−m2e−rε

4/15.

For r > 30ε−4 logm, this is > 0, so there exist some points which work.

Now let’s prove Dudley’s theorem.

Proof. Let S1, . . . , Sm be a maximal ε-packing of (F , ‖ · ‖L2(µ)). By the lemma, we
can pick r ≤ cε−4 logm points x1, . . . , xr such that S1, . . . , Sm is an ε/2-packing of
(F , ‖ · ‖L2(µx)). We can bound

m ≤ |{S ∩ {x1, . . . , xr} : S ∈ F}|
Using the Sauer-Shelah lemma,

≤
(

er

vc(F)

)vc(F)

≤
(
ec logm

vc(F)ε4

)vc(F)

= 2vc(F)
(

logm

2 vc(F)

)vc(F)(
(ec)1/4

ε

)4 vc(F)

Using the bound α logm ≤ mα with α = 1/(2 vc(F)),

≤ m1/2

(
(2ec)1/4

ε

)4 vc(F)

.

So we get

m ≤
(

(2ec)1/4

ε

)8 vc(F)

,

which provides a bound on the covering number.
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4.2 Uniform Glivenko-Cantelli rates

We can now give effective rates for the Glivenko-Cantelli theorem for any classes of
sets with finite VC dimension. Here is a symmetrization lemma we will not prove.

Lemma 4.4 (Symmetrization and chaining).

E

[
sup
S∈F

∣∣∣∣∣ 1n
n∑
i=1

1S(Xi)− Pµ(S)

∣∣∣∣∣
]
.

1√
n
E
[∫ 1

0

√
logN(F , ‖ · ‖L2(µn), ε) dε

]
,

where µn := 1
n

∑n
i=1 δXi

is the empirical distribution of the data X1, . . . , Xn.

Proof. See chapter 7 of [vH14].

Theorem 4.2 (Uniform Glivenko-Cantelli rates). There is a universal constant L
such that for any distribution µ on Ω and a collection F of subsets of Ω,

E

[
sup
S∈F

∣∣∣∣∣ 1n
n∑
i=1

1S(Xi)− Pµ(S)

∣∣∣∣∣
]
≤ L

√
vc(F)

n
.

Remark 4.2. This provides L1-type Glivenko-Cantelli results that hold regardless
of the distribution µ chosen, as long as the VC dimension of F is finite. It also
provides an explicit rate of convergence of the error, 1/

√
n, which only scales with

the VC dimension as a constant factor.
If F is just a single set S, then the bound gives us the usual rate for the Central

Limit Theorem. So for the convergence to hold uniformly over F , we only pay the
price of a constant factor: the VC dimension.

Proof. Using symmetrization and then the previous theorem,

E

[
sup
S∈F

∣∣∣∣∣ 1n
n∑
i=1

1S(Xi)− Pµ(S)

∣∣∣∣∣
]
.

1√
n
E
[∫ 1

0

√
logN(F , ‖ · ‖L2(µn), ε) dε

]

≤
√

vc(F)

n
·
√
K

∫ 1

0

√
log(K/ε) dε.

Although this is an L1 convergence result, we can use it to obtain an almost sure
convergence result, more in the vein of the original Glivenko-Cantelli theorem.

Corollary 4.1 (Glivenko-Cantelli for finite VC classes). Let µ be a distribution on

Ω, let X1, X2, . . .
iid∼ µ, and let F be a collection of subsets of Ω with vc(F) < ∞.

Then, as n→∞,

sup
S∈F

∣∣∣∣∣ 1n
n∑
i=1

1S(Xi)− Pµ(S)

∣∣∣∣∣ a.s.−−→ 0.
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Proof. For large n,

Pµ

(
sup
S∈F

∣∣∣∣∣ 1n
n∑
i=1

1S(Xi)− Pµ(S)

∣∣∣∣∣ > ε

)

≤ Pµ

(
sup
S∈F

∣∣∣∣∣ 1n
n∑
i=1

1S(Xi)− Pµ(S)

∣∣∣∣∣− E

[
sup
S∈F

∣∣∣∣∣ 1n
n∑
i=1

1S(Xi)− Pµ(S)

∣∣∣∣∣
]
>
ε

2

)
By the bounded differences inequality,

≤ exp(−cε2n),

where c is a universal constant. By the Borel-Cantelli lemma,

Pµ

(
sup
S∈F

∣∣∣∣∣ 1n
n∑
i=1

1S(Xi)− Pµ(S)

∣∣∣∣∣ > ε for infinitely many n

)
= 0.

This holds for all ε > 0, so

sup
S∈F

∣∣∣∣∣ 1n
n∑
i=1

1S(Xi)− Pµ(S)

∣∣∣∣∣ a.s.−−→ 0.

Remark 4.3. It can be shown that if vc(F) =∞, then the Glivenko-Cantelli theo-
rem fails.
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