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Neuroscientists have long been investigating brain function with correlations, i.e. Pearson 
Correlation, Canonical Correlation Analysis, Representational Similarity Analysis. However, there 
are concerns and supporting evidence showing correlation does not imply causation. Quoting 
Judea Pearl: “Statisticians have been immensely confused about what variables should and 
should not be controlled for, so the default practice has been to control for everything one can 
measure. It is a convenient, simple procedure to follow, but it is both wasteful and ridden with 
errors…at the same time, statisticians greatly under rate controlling in the sense that they are 
loath to talk about causality at all”

Specifically, people have been applying Granger Causality (and transfer entropy) as a tool to 
claim causality between neural spike trains. However, both these methods have significant flaws. 
Here we used cutting-edge mathematical tools such as differential geometry and dynamical 
systems analysis to apply state-of-the-art causality testing, in order to find causation relationships 
between time-series dynamics in neural spike trains in the PFC.
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https://github.com/qijiezhao/pseudo-3d-pytorch.git

1. Here, we applied cutting-edge mathematical tools to detect the causality between neural time-series 
dynamics in a probabilistic reversal learning task. 

2. We tested whether our method works properly on a well-designed simulated dataset. We found that the 
method correctly detects directionality of casuality.

3. Then we tested the method on real data from the vlPFC and cdlPFC/mdlPFC/rdlFPC
4. We detected directionality in specific neuron pairs through convergence of the method (Figures 7 and 8)
5. Then we looked at the population causality 1) between adjacent subregions and 2) same subregion across 

PFC hemispheres. We found some subset of neurons that show a higher causal relationship in adjacent 
subregions and some subpopulations exhibited strong causal relationship across hemispheres (Figures 10 
and 11)

6. We showed that optimal embedding dimension peaked around E=6 which implies that the complexity of the 
underlying dynamical system appears to be most commonly 6 dimensions (Figure 9)

1. Is CCM better than traditional methods of testing causality (Granger Causality Test or Transfer Entropy)
2. Can we define any network structure within the population of neurons in one brain area? (using indirect 

connections, finding graph structure etc.), and use this to further interpret results of CCM?
3. Does the complexity of the underlying nonlinear neural dynamical system change (likely increase) during 

uncertain stages of the task versus certain stages?

Future Directions

Figure 6: This was a probabilistic reversal  task
○ A. Task was carried out in 80 trial blocks. At 

the beginning of each block of trials, 2 new 
images were introduced that the animal 
hadn’t seen before. For each trial the animals 
fixated, and then two images were presented. 
Monkeys made saccades to indicate their 
choice and then were stochastically rewarded

○  B. 2 Conditions:
■  In “what” condition one of the images 

was more frequently rewarded (p = 0.7) 
independently of which side it appeared 
on, and one of the images was less 
frequently rewarded (p = 0.3)

■ In “where” condition one of the saccade 
directions was more frequently rewarded 
(p = 0.7) and one was less frequently 
rewarded (p = 0.3) independently of 
which image was at the chosen location. 
The condition remained fixed for the 
entire block. However, on a randomly 
chosen trial between 30-50, reward 
mapping was reversed and the less 
frequently chosen object or location 
became more frequently rewarded, and 
vice-versa.

○  C. Choice behavior across sessions. 
Monkeys quickly learned the more frequently 
rewarded image (left panel) or direction (right 
panel), and reversed their preferences when 
the choice-outcome mapping reversed. 
Because the number of trials in the 
acquisition and reversal phase differed across 
blocks, the trials were interpolated in each 
block to make all phases of equal length 
before averaging. The choice data was also 
smoothed using Gaussian kernel regression 
(kernel width sd = 1 trial). 

○ D. Schematic showing locations of recording 
arrays, 4 in each hemisphere. Array locations 
were highly similar across animals.

Figure 8: Bidirectional Causality Shown Through 
Convergence of CCM with Two Sample Neurons in 
Area A

Figure 7: Unidirectional Causality Shown Through 
Convergence of CCM with Sample Neurons from Area B 

Figure 5: Weak 
causation from small 
neural net example 
demonstrated from A 
neuron subpopulation to 
B neuron subpopulation 
from toy ANN data, but 
no causation from the B 
to A direction  

Figure 13: CCM Matrix for Region C shows clusters of 
adjacent neurons with higher correlation than the others

Figure 6: Moving Average 
Time Series Smoothing 
Applied to Individual Neural 
Spike Trains for Noise 
Reduction Used Before 
Causality Analysis

Figure 12: CCM Matrix for Region B shows smaller 
clusters of adjacent neurons with higher correlation than 
the others

Figure 2: Convergent cross mapping (CCM) uses shadow manifold correspondence. 
This simple Lorenz attractor example shows the attractor manifold of the original system 
M(X,Y,Z) along with the two shadow manifolds created with time lag = tau. Since X and Y 
are dynamically coupled, points that are proximal in Mx will be proximal in My (by 
Takens’ Embedding Theorem), allowing us to estimate states in X from Y, (using nearest 
neighbor embedding), and vice versa. Longer time series cause Mx and My to become 
denser and neighborhoods in red and green to shrink, giving us more precise cross-map 
estimates.
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Figure 4: Schematic of 
Small Neural Net,
Populations A and B,
Transition Probabilities

Figure 3 
3A: Coupled Logistic 
Time Series Example 
with Clear Causality
3B: CCM of Coupled 
Logistic Time Series 
Shows a Clear 
Unidirectional 
Causality and Strong 
Convergence as 
Library Size 
Increases, As 
Expected

Figure 11: CCM Matrix for Adjacent Regions in Left 
Hemisphere of Monkey’s PFC

Figure 10: CCM Matrix for Corresponding Regions 
Across Left and Right Hemispheres of Monkey’s PFC

       
        
        
        

   

       
        
        
         

  

Figure 9: Optimal embedding dimension (E) that 
gives highest CCM causality for area B neurons 
shows that the complexity of the underlying dynamical 
system the neural spike trains seems to trend towards 
E=6, suggesting high complexity
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